Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.1.1. Unsubstituted and 2,9(10),16(17),23(24)-tetrasubstituted Phthalocyanines
2.1.2. Statistical Synthesis of Unsymmetrical Phthlaocyanines
2.2. XRD Characterization
2.3. Cost Analysis
3. Materials and Methods
3.1. General Synthesis of Unsubstituted Phthalocyanines
3.2. General Synthesis of 2,9(10),16(17),23(24)-Tetra-tert-butyl-Substituted Phthalocyanines
3.3. Synthesis of Tri-tert-butyl-iodophthalocyaninatozinc(II)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Delolo, F.G.; Dos Santos, E.N.; Gusevskaya, E.V. Anisole: A Further Step to Sustainable Hydroformylation. Green Chem. 2019, 21, 1091–1098. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Bio-Based Solvents: An Emerging Generation of Fluids for the Design of Eco-Efficient Processes in Catalysis and Organic Chemistry. Chem. Soc. Rev. 2013, 42, 9550–9570. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.B. Phthalocyanine Metal Complexes in Catalysis. Chem. Rev. 2013, 113, 8152–8191. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst. Nature 2019, 575, 639–642. [Google Scholar] [CrossRef]
- Mukherjee, D.; Manjunatha, R.; Sampath, S.; Ray, A.K. Phthalocyanines as Sensitive Materials for Chemical Sensors. In Materials for Chemical Sensing; Springer International Publishing: Cham, Switzerland, 2016; pp. 165–226. [Google Scholar] [CrossRef]
- Zhang, Y.; Lovell, J.F. Recent Applications of Phthalocyanines and Naphthalocyanines for Imaging and Therapy. Wiley Interdiscip. Rev. 2017, 9, e1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melville, O.A.; Grant, T.M.; Mirka, B.; Boileau, N.T.; Park, J.; Lessard, B.H. Ambipolarity and Air Stability of Silicon Phthalocyanine Organic Thin-Film Transistors. Adv. Electron. Mater. 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Melville, O.A.; Lessard, B.H.; Bender, T.P. Phthalocyanine-Based Organic Thin-Film Transistors: A Review of Recent Advances. ACS Appl. Mater. Interfaces 2015, 7, 13105–13118. [Google Scholar] [CrossRef]
- Grant, T.M.; Josey, D.S.; Sampson, K.L.; Mudigonda, T.; Bender, T.P.; Lessard, B.H. Boron Subphthalocyanines and Silicon Phthalocyanines for Use as Active Materials in Organic Photovoltaics. Chem. Rec. 2019, 19, 1093–1112. [Google Scholar] [CrossRef]
- Ke, W.; Zhao, D.; Grice, C.R.; Cimaroli, A.J.; Fang, G.; Yan, Y. Efficient Fully-Vacuum-Processed Perovskite Solar Cells Using Copper Phthalocyanine as Hole Selective Layers. J. Mater. Chem. A 2015, 3, 23888–23894. [Google Scholar] [CrossRef]
- Urbani, M.; Ragoussi, M.E.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines for Dye-Sensitized Solar Cells. Coord. Chem. Rev. 2019, 381, 1–64. [Google Scholar] [CrossRef]
- Urbani, M.; De La Torre, G.; Nazeeruddin, M.K.; Torres, T. Phthalocyanines and Porphyrinoid Analogues as Hole-and Electron-Transporting Materials for Perovskite Solar Cells. Chem. Soc. Rev. 2019, 48, 2738–2766. [Google Scholar] [CrossRef]
- Dede, G.; Bayrak, R.Y.; Er, M.; Özkaya, A.R.; Deǧirmencioǧlu, I. DBU-Catalyzed Condensation of Metal Free and Metallophthalocyanines Containing Thiazole and Azine Moieties: Synthesis, Characterization and Electrochemical Properties. J. Organomet. Chem. 2013, 740, 70–77. [Google Scholar] [CrossRef]
- Paris, J.; Bernhard, Y.; Boudon, J.; Heintz, O.; Millot, N.; Decréau, R.A. Phthalocyanine-Titanate Nanotubes: A Promising Nanocarrier Detectable by Optical Imaging in the so-Called Imaging Window. RSC Adv. 2015, 5, 6315–6322. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Shan, H.; Lin, Y.; Chen, Q.; Roy, V.A.L.; Xu, Z. Ultrasound-Induced Organogel Formation Followed by Thin Film Fabrication via Simple Doctor Blading Technique for Field-Effect Transistor Applications. ACS Appl. Mater. Interfaces 2016, 8, 18991–18997. [Google Scholar] [CrossRef] [PubMed]
- Olgac, R.; Soganci, T.; Baygu, Y.; Gök, Y.; Ak, M. Zinc(II) Phthalocyanine Fused in Peripheral Positions Octa-Substituted with Alkyl Linked Carbazole: Synthesis, Electropolymerization and Its Electro-Optic and Biosensor Applications. Biosens. Bioelectron. 2017, 98, 202–209. [Google Scholar] [CrossRef]
- Tomoda, H.; Saito, S.; Ogawa, S.; Shiraishi, S. Synthesis of Phthalocyanines From Phthalonitrile With Organic Strong Bases. Chem. Lett. 1980, 9, 1277–1280. [Google Scholar] [CrossRef]
- Wöhrle, D.; Schnurpfeil, G.; Knothe, G. Efficient Synthesis of Phthalocyanines and Related Macrocyclic Compounds in the Presence of Organic Bases. Dye. Pigment. 1992, 18, 91–102. [Google Scholar] [CrossRef]
- De Filippis, M.P.; Dei, D.; Fantetti, L.; Roncucci, G. Synthesis of a New Water-Soluble Octa-Cationic Phthalocyanine Derivative for PDT. Tetrahedron Lett. 2000, 41, 9143–9147. [Google Scholar] [CrossRef]
- Del Sole, R.; De Luca, A.; Mele, G.; Vasapollo, G. First Evidence of Formation of Stable DBU Zn-Phthalocyanine Complexes: Synthesis and Characterization. J. Porphyr. Phthalocyanines 2005, 9, 519–527. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Ren, L.; Bai, M.; Wu, L.; Zhai, B.; Zhou, X. Synthesis and Evaluation of Cationic Phthalocyanine Derivatives as Potential Inhibitors of Telomerase. Bioorganic Med. Chem. 2008, 16, 303–312. [Google Scholar] [CrossRef]
- Koyun, Ö.; Gördük, S.; Keskin, B.I.; Çetinkaya, A.; Koca, A.I.; Avciata, U. Microwave-Assisted Synthesis, Electrochemistry and Spectroelectrochemistry of Phthalocyanines Bearing Tetra Terminal-Alkynyl Functionalities and Click Approach. Polyhedron 2016, 113, 35–49. [Google Scholar] [CrossRef]
- Kharisov, B.I.; Ortiz Mendez, U.; Garza, J.L.A.; Almaguer Rodriguez, J.R. Synthesis of Non-Substituted Phthalocyanines by Standard and Non-Standard Techniques. Influence of Solvent Nature in Phthalocyanine Preparation at Low Temperature by UV-Treatment of the Reaction System. New J. Chem. 2005, 29, 686–692. [Google Scholar] [CrossRef]
- Saito, Y.; Higuchi, T.; Sugimori, H.; Yabu, H. One-Pot UV-Assisted Synthesis of Metal Phthalocyanine Nanocrystals. ChemNanoMat 2015, 1, 92–95. [Google Scholar] [CrossRef]
- Zheng, W.; Wan, C.Z.; Zhang, J.X.; Li, C.H.; You, X.Z. Facile Synthesis of Phthalocyanine at Low Temperature with Diisopropylamide Anion as Nucleophile. Tetrahedron Lett. 2015, 56, 4459–4462. [Google Scholar] [CrossRef]
- Leznoff, C.C.; Hu, M.; Nolan, K.J.M. The Synthesis of Phthalocyanines at Room Temperature. Chem. Commun. 1996, 10, 1245–1246. [Google Scholar] [CrossRef] [Green Version]
- Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 Selection Guide of Classical- and Less Classical-Solvents. Green Chem. 2015, 18, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chem. 2016, 18, 3879–3890. [Google Scholar] [CrossRef]
- Bernt, C.M.; Bottari, G.; Barrett, J.A.; Scott, S.L.; Barta, K.; Ford, P.C. Mapping Reactivities of Aromatic Models with a Lignin Disassembly Catalyst. Steps toward Controlling Product Selectivity. Catal. Sci. Technol. 2016, 6, 2984–2994. [Google Scholar] [CrossRef] [Green Version]
- Gillet, S.; Aguedo, M.; Petitjean, L.; Morais, A.R.C.; Da Costa Lopes, A.M.; Łukasik, R.M.; Anastas, P.T. Lignin Transformations for High Value Applications: Towards Targeted Modifications Using Green Chemistry. Green Chem. 2017, 19, 4200–4233. [Google Scholar] [CrossRef]
- Leiva, K.; Garcia, R.; Sepulveda, C.; Laurenti, D.; Geantet, C.; Vrinat, M.; Garcia-Fierro, J.L.; Escalona, N. Conversion of Guaiacol over Supported ReOx Catalysts: Support and Metal Loading Effect. Catal. Today 2017, 296, 228–238. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
- Glycerine Producers’ Association. Physical Properties of Glycerine and Its Solutions; Glycerine Producers’ Association: New York, NY, USA, 1963; pp. 1–27. [Google Scholar]
- Verma, P.K.; Sharma, U.; Bala, M.; Kumar, N.; Singh, B. Transition Metal-Free 1,3-Dimethylimidazolium Hydrogen Carbonate Catalyzed Hydration of Organonitriles to Amides. RSC Adv. 2013, 3, 895–899. [Google Scholar] [CrossRef]
- Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. Efficient and Practical Transition Metal-Free Catalytic Hydration of Organonitriles to Amides. Green Chem. 2012, 14, 921–924. [Google Scholar] [CrossRef]
- Manley-King, C.I.; Bergh, J.J.; Petzer, J.P. Inhibition of Monoamine Oxidase by C5-Substituted Phthalimide Analogues. Bioorganic Med. Chem. 2011, 19, 4829–4840. [Google Scholar] [CrossRef] [PubMed]
- Galanin, N.E.; Kudrik, E.V.; Shaposhnikov, G.P. 4-Tetraphenyl- and 4-Tetraphenoxy-Substituted Meso-Tetraphenyltetrabenzoporphyrins. Synthesis and Spectral Properties. Russ. J. Org. Chem. 2006, 42, 603–606. [Google Scholar] [CrossRef]
- García-Frutos, E.M.; O’Flaherty, S.M.; Maya, E.M.; De La Torre, G.; Blau, W.; Vázquez, P.; Torres, T. Alkynyl Substituted Phthalocyanine Derivatives as Targets for Optical Limiting. J. Mater. Chem. 2003, 13, 749–753. [Google Scholar] [CrossRef]
- Zanotti, G.; Angelini, N.; Paoletti, A.M.; Pennesi, G.; Rossi, G.; Bonapasta, A.A.; Mattioli, G.; Di Carlo, A.; Brown, T.M.; Lembo, A.; et al. Synthesis of a Novel Unsymmetrical Zn(Ii) Phthalocyanine Bearing a Phenyl Ethynyl Moiety as Sensitizer for Dye-Sensitized Solar Cells. Dalton Trans. 2011, 40, 38–40. [Google Scholar] [CrossRef]
- Zanotti, G.; Angelini, N.; Mattioli, G.; Paoletti, A.M.; Pennesi, G.; Caschera, D.; Sobolev, A.P.; Beverina, L.; Calascibetta, A.M.; Sanzone, A.; et al. [1]Benzothieno[3,2-b][1]Benzothiophene-Phthalocyanine Derivatives: A Subclass of Solution-Processable Electron-Rich Hole Transport Materials. Chempluschem 2020, 85, 2376–2386. [Google Scholar] [CrossRef]
- Lebedeva, N.S.; Parfenyuk, E.V.; Malkova, E.A. X-Ray Diffraction and IR Spectral Characteristics of Zinc(II)Tetra-Tert-Butylphthalocyanine. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2007, 68, 491–494. [Google Scholar] [CrossRef]
- Dong, L.; Hu, Q.; Rezaee, E.; Chen, Q.; Yang, S.; Cai, S.; Liu, B.; Pan, J.H.; Xu, Z.X. Dopant-Free Hole-Transporting Layer Based on Isomer-Pure Tetra-Butyl-Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Sol. RRL 2019, 3, 1–8. [Google Scholar] [CrossRef]
- Sfyri, G.; Chen, Q.; Lin, Y.W.; Wang, Y.L.; Nouri, E.; Xu, Z.X.; Lianos, P. Soluble Butyl Substituted Copper Phthalocyanine as Alternative Hole-Transporting Material for Solution Processed Perovskite Solar Cells. Electrochim. Acta 2016, 212, 929–933. [Google Scholar] [CrossRef]
- Osedach, T.P.; Andrew, T.L.; Bulović, V. Effect of Synthetic Accessibility on the Commercial Viability of Organic Photovoltaics. Energy Environ. Sci. 2013, 6, 711–718. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Youngblood, W.J. Synthesis of a New Trans-A2B2 Phthalocyanine Motif as a Building Block for Rodlike Phthalocyanine Polymers. J. Org. Chem. 2006, 71, 3345–3356. [Google Scholar] [CrossRef] [PubMed]
- De La Torre, G.; Claessens, C.G.; Torres, T. Phthalocyanines: Old Dyes, New Materials. Putting Color in Nanotechnology. Chem. Commun. 2007, 20, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
Product | DMAE-DBU | A-DBU | A-KOH | GA-KOH |
---|---|---|---|---|
CoPc | 87% | 72% | 24% | 37% |
CuPc | 83% | 49% | 76% | 73% * |
ZnPc | 75% | 56% | n/a ** | n/a ** |
Product | DMAE-DBU | A-DBU | A-KOH | GA-KOH |
---|---|---|---|---|
t-Bu4CoPc | 62% | 50% | traces | traces |
t-Bu4CuPc | 58% | 38% | 43% * | 26% |
t-Bu4ZnPc | 49% | 10% | n/a ** | 16% |
a (Å) | c (Å) | c (Å) | β (°) | |
---|---|---|---|---|
CuPc | 14.698 (1) | 4.8137(8) | 19.595(2) | 121.06(1) |
ZnPc | 14.569(1) | 4.8676(3) | 19.279(2) | 120.62(1) |
CoPc | 14.642(2) | 4.804(2) | 19.496(3) | 120.60(1) |
Product | Protocol | Reagents (EUR/kg) | Solvents (EUR/kg) | Workup/Purification (EUR/kg) | Total (EUR/kg) | Total (no workup/purification) (EUR/kg) |
---|---|---|---|---|---|---|
CoPc | standard | 238.57 | 221.08 | 356.03 | 815.68 | 459.65 |
A-DBU | 340.78 | 165.43 | 419.42 | 925.63 | 506.21 | |
A-KOH | 1016.34 | 492.00 | 1247.47 | 2755.81 | 1508.34 | |
GA-KOH | 671.47 | 240.17 | 835.75 | 1747.39 | 911.74 | |
CuPc | standard | 119.62 | 228.45 | 368.81 | 716.88 | 348.07 |
A-DBU | 199.41 | 241.56 | 612.47 | 1053.44 | 440.97 | |
A-KOH | 131.02 | 157.82 | 400.15 | 688.99 | 288.84 | |
GA-KOH | 134.11 | 100.53 | 408.81 | 643.45 | 234.64 | |
ZnPc | standard | 135.03 | 252.52 | 408.32 | 785.97 | 387.55 |
A-DBU | 179.19 | 212.43 | 538.64 | 930.26 | 391.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanotti, G.; Imperatori, P.; Paoletti, A.M.; Pennesi, G. Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules 2021, 26, 1760. https://doi.org/10.3390/molecules26061760
Zanotti G, Imperatori P, Paoletti AM, Pennesi G. Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules. 2021; 26(6):1760. https://doi.org/10.3390/molecules26061760
Chicago/Turabian StyleZanotti, Gloria, Patrizia Imperatori, Anna Maria Paoletti, and Giovanna Pennesi. 2021. "Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution" Molecules 26, no. 6: 1760. https://doi.org/10.3390/molecules26061760
APA StyleZanotti, G., Imperatori, P., Paoletti, A. M., & Pennesi, G. (2021). Sustainable Approaches to the Synthesis of Metallophthalocyanines in Solution. Molecules, 26(6), 1760. https://doi.org/10.3390/molecules26061760