Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Methods
2.2. Validation of Methods
2.2.1. Analytical Specificity
2.2.2. Linearity, Working Range and Limits
2.2.3. Precision
2.2.4. Trueness
2.3. Application to Lingonberry Materials
3. Materials and Methods
3.1. Chemicals and Solvents
3.2. Standard Solutions
3.3. Plant Material
3.4. Preparation of Lingonberry Extracts
3.5. Optimization and Validation of Chromatographic Analysis
3.6. Chromatographic Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.H.; Sethi, G.; Bishayee, A. Ursolic acid in cancer prevention and treatment: Molecular targets, pharmacokinetics and clinical studies. Biochem. Pharmacol. 2013, 85, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.M.; Legay, S.; Deleruelle, A.; Nieuwenhuizen, N.; Punter, M.; Brendolise, C.; Cooney, J.M.; Lateur, M.; Hausman, J.-F.; Larondelle, Y.; et al. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. New Phytol. 2016, 211, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.; Pączkowski, C.; Szakiel, A. Triterpenoid profile of fruit and leaf cuticular waxes of edible honeysuckle Lonicera caerulea var. kamtschatica. Acta Soc. Bot. Pol. 2017, 86, 3539. [Google Scholar] [CrossRef] [Green Version]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina species as a new source of bioactive pentacyclic triterpenes. Ind. Crop. Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic triterpene distribution in various plants—Rich sources for a new group of multi-potent plant extracts. Molecules 2009, 14, 2016–2031. [Google Scholar] [CrossRef] [Green Version]
- Lesellier, E.; Destandau, E.; Grigoras, C.; Fougère, L.; Elfakir, C. Fast separation of triterpenoids by supercritical fluid chromatography/evaporative light scattering detector. J. Chromatogr. A 2012, 1268, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Martelanc, M.; Vovk, I.; Simonovska, B. Determination of three major triterpenoids in epicuticular wax of cabbage (Brassica oleracea L.) by high-performance liquid chromatography with UV and mass spectrometric detection. J. Chromatogr. A 2007, 1164, 145–152. [Google Scholar] [CrossRef]
- Numonov, S.; Sharopov, F.; Qureshi, M.N.; Gaforzoda, L.; Gulmurodov, I.; Khalilov, Q.; Setzer, W.N.; Habasi, M.; Aisa, H.A. The ursolic acid-rich extract of Dracocephalum heterophyllum Benth. with potent antidiabetic and cytotoxic activities. Appl. Sci. 2020, 10, 6505. [Google Scholar] [CrossRef]
- Sheng, Y.; Chen, X.B. Isolation and identification of an isomer of β-sitosterol by HPLC and GC-MS. Health 2009, 1, 203. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep. 2018, 35, 1294–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.E.P.; Pires, F.B.; Bressan, L.P.; Silva, F.V., Jr.; Lameira, O.; Rosa, M.B. Some triterpenic compounds in extracts of Cecropia and Bauhinia species for different sampling years. Rev. Bras. Farmacogn. 2018, 28, 21–26. [Google Scholar] [CrossRef]
- Oliveira, E.M.S.; Freitas, S.L.; Martins, F.S.; Couto, R.O.; Pinto, M.V.; Paula, J.R.; Conceição, E.C.; Bara, M.T.F. Isolation and quantitative HPLC-PDA analysis of lupeol in phytopharmaceutical intermediate products from Vernonanthura ferruginea (Less.) H. Rob. Química Nova 2012, 35, 1041–1045. [Google Scholar] [CrossRef] [Green Version]
- Carretero, A.S.; Carrasco-Pancorbo, A.; Cortacero, S.; Gori, A.; Cerretani, L.; Fernández-Gutiérrez, A. A simplified method for HPLC-MS analysis of sterols in vegetable oil. Eur. J. Lipid Sci. Technol. 2008, 110, 1142–1149. [Google Scholar] [CrossRef]
- Du, H.; Chen, X.Q. A comparative study of the separation of oleanolic acid and ursolic acid in Prunella vulgaris by high-performance liquid chromatography and cyclodextrin-modified micellar electrokinetic chromatography. JICS 2009, 6, 334–340. [Google Scholar] [CrossRef]
- Naumoska, K.; Vovk, I. Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 229–238. [Google Scholar] [CrossRef]
- Jemmali, Z.; Chartier, A.; Dufresne, C.; Elfakir, C. Optimization of the derivatization protocol of pentacyclic triterpenes prior to their gas chromatography–mass spectrometry analysis in plant extracts. Talanta 2016, 147, 35–43. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Falev, D.I. Determination of triterpenoids from birch bark by liquid chromatography-tandem mass spectrometry. J. Anal. Chem. 2014, 69, 1264–1269. [Google Scholar] [CrossRef]
- Sánchez Avila, N.; Priego Capote, F.; Luque de Castro, M.D. Ultrasound-assisted extraction and silylation prior to gas chromatography-mass spectrometry for the characterization of the triterpenic fraction in olive leaves. J. Chromatogr. A 2007, 1165, 158–165. [Google Scholar] [CrossRef]
- Marchelak, A.; Olszewska, M.A.; Owczarek, A. Simultaneous quantification of thirty polyphenols in blackthorn flowers and dry extracts prepared thereof: HPLC-PDA method development and validation for quality control. J. Pharm. Biomed. Anal. 2020, 184, 113121. [Google Scholar] [CrossRef]
- Rhourri-Frih, B.; Chaimbault, P.; Claude, B.; Lamy, C.; André, P.; Lafosse, M. Analysis of pentacyclic triterpenes by LC-MS. A comparative study between APCI and APPI. J. Mass Spectrom. 2009, 44, 71–80. [Google Scholar] [CrossRef]
- Mroczek, A.; Kapusta, I.; Janda, B.; Janiszowska, W. Triterpene saponin content in the roots of red beet (Beta vulgaris L.) cultivars. J. Agric. Food Chem. 2012, 60, 12397–12402. [Google Scholar] [CrossRef] [PubMed]
- Zacchigna, M.; Cateni, F.; Faudale, M.; Sosa, S.; Della Loggia, R. Rapid HPLC analysis for quantitative determination of the two isomeric triterpenic acids, oleanolic acid and ursolic acid, in Plantago major. Sci. Pharm. 2009, 77, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Gleńsk, M.; Włodarczyk, M. Determination of oleanolic and ursolic acids in Sambuci flos using HPLC with a new reversed-phase column packed with naphthalene bounded silica. Nat. Prod. Commun. 2017, 12, 1839–1841. [Google Scholar] [CrossRef] [Green Version]
- Dashbaldan, S.; Becker, R.; Pączkowski, C.; Szakiel, A. Various patterns of composition and accumulation of steroids and triterpenoids in cuticular waxes from screened Ericaceae and Caprifoliaceae berries during fruit development. Molecules 2019, 24, 3826. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; MacKinnon, S.L.; Craft, C.C.; Matchett, M.D.; Hurta, R.A.R.; Neto, C.C. Ursolic acid and its esters: Occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in du145 prostate tumor cells. J. Sci. Food Agric. 2011, 91, 789–796. [Google Scholar] [CrossRef]
- Shamilov, A.A.; Bubenchikova, V.N.; Chernikov, M.V.; Pozdnyakov, D.I.; Garsiya, E.R. Vaccinium vitis-idaea L.: Chemical contents, pharmacological activities. Pharm. Sci. 2020, 26, 344–362. [Google Scholar] [CrossRef]
- Vrancheva, R.; Ivanov, I.; Dincheva, I.; Badjakov, I.; Pavlov, A. Triterpenoids and other non-polar compounds in leaves of wild and cultivated Vaccinium species. Plants 2021, 10, 94. [Google Scholar] [CrossRef]
- Debnath, S.C.; Arigundam, U. In vitro Propagation strategies of medicinally important berry crop, lingonberry (Vaccinium vitis-idaea L.). Agronomy 2020, 10, 744. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical composition and biological activities of the nord-west romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) Leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef]
- Klavins, L.; Klavina, L.; Huna, A.; Klavins, M. Polyphenols, carbohydrates and lipids in berries of Vaccinium species. Environ. Exp. Biol. 2015, 13, 147–158. [Google Scholar]
- Szakiel, A.; Pączkowski, C.; Koivuniemi, H.; Huttunen, S. Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. J. Agric. Food Chem. 2012, 60, 4994–5002. [Google Scholar] [CrossRef]
- Trivedi, P.; Karppinen, K.; Klavins, L.; Kviesis, J.; Sundqvist, P.; Nguyen, N.; Heinonen, E.; Klavins, M.; Jaakola, L.; Väänänen, J.; et al. Compositional and morphological analyses of wax in northern wild berry species. Food Chem. 2019, 295, 441–448. [Google Scholar] [CrossRef]
- Owczarek, A.; Kuźma, Ł.; Wysokińska, H.; Olszewska, M.A. Application of response surface methodology for optimisation of simultaneous UHPLC-PDA determination of oleanolic and ursolic acids and standardisation of Ericaceae medicinal plants. Appl. Sci. 2016, 6, 244. [Google Scholar] [CrossRef] [Green Version]
- Szakiel, A.; Mroczek, A. Distribution of triterpene acids and their derivatives in organs of cowberry (Vaccinium vitis-idaea L.) Plant. Acta Biochim. Pol. 2007, 54, 733–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahadır-Acıkara, Ö.; Özbilgin, S.; Saltan-İşcan, G.; Dall’Acqua, S.; Rjašková, V.; Özgökçe, F.; Suchý, V.; Šmejkal, K. Phytochemical analysis of Podospermum and Scorzonera n-hexane extracts and the HPLC quantitation of triterpenes. Molecules 2018, 23, 1813. [Google Scholar] [CrossRef] [Green Version]
- Butkevičiūtė, A.; Liaudanskas, M.; Kviklys, D.; Zymonė, K.; Raudonis, R.; Viškelis, J.; Uselis, N.; Janulis, V. Detection and analysis of triterpenic compounds in apple extracts. Int. J. Food Prop. 2018, 21, 1716–1727. [Google Scholar] [CrossRef] [Green Version]
- Atri, P.; Bhatti, M.; Kamboj, A. Development and validation of rapid reverse phase high-performance liquid chromatography method for simultaneous estimation of stigmasterol and β-sitosterol in extracts of various parts (leaves, stems, and roots) of Xanthium strumarium Linn. Asian J. Pharm. Clin. Res. 2017, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Li, H.L.; Tan, Y.F.; Lai, W.Y.; Qin, Z.M.; Cai, H.D.; Li, Y.H.; Zhang, J.Q.; Zhang, X.P. A sensitive and cost-effective LC-ESI-MS/MS method for quantitation of euscaphic acid in rat plasma using optimized formic acid concentration in the mobile phase. Anal. Methods 2014, 6, 8713–8721. [Google Scholar] [CrossRef]
- Chandran, S.; Singh, R.S.P. Comparison of various international guidelines for analytical method validation. Pharmazie 2007, 62, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Li, E.N.; Luo, J.G.; Kong, L.Y. Qualitative and quantitative determination of seven triterpene acids in Eriobotrya japonica Lindl. by high-performance liquid chromatography with photodiode array detection and mass spectrometry. Phytochem. Anal. 2009, 20, 338–343. [Google Scholar] [CrossRef]
- Vemuri, S.; Ramasamy, M.K.; Rajakanu, P.; Kumar, R.C.S.; Kalliappan, I. Application of chemometrics for the simultaneous estimation of stigmasterol and β-sitosterol in manasamitra vatakam-an ayurvedic herbomineral formulation using HPLC-PDA method. J. Appl. Pharm. Sci. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Betz, J.M.; Brown, P.N.; Roman, M.C. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 2011, 82, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics. 2014. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 25 January 2021).
- Rafamantanana, M.H.; Rozet, E.; Raoelison, G.E.; Cheuk, K.; Ratsimamanga, S.U.; Hubert, P.; Quetin-Leclercq, J. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (Apiaceae). J. Chromatogr. B 2009, 877, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC concerning the Performance of Analytical Methods and the Interpretation of Results. 2002. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:221:0008:0036:EN:PDF (accessed on 25 January 2021).
- ICH Q2 (R1). Validation of Analytical Procedures: Text and Methodology. Current Step 4 Version. 2005. Available online: https://pacificbiolabs.com/wp-content/uploads/2017/12/Q2_R1__Guideline-4.pdf (accessed on 25 January 2021).
- Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B.C. Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 2014, 52, 1478–1486. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Ruiz, G.; Hernández-Vázquez, L.; Luna, H.; Wacher-Rodarte, M.d.C.; Navarro-Ocaña, A. Growth inhibition of Streptococcus from the oral cavity by α-amyrin esters. Molecules 2012, 17, 12603–12611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive compounds, nutritional quality and oxidative stability of cold-pressed camelina (Camelina sativa L.) oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Szakiel, A.; Pączkowski, C.; Huttunen, S. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland. J. Agric. Food Chem. 2012, 60, 11839–11849. [Google Scholar] [CrossRef]
Compound | Linear Equation | Coefficient of Determination (r2) | Linearity Range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|
Maslinic acid | y = 8960 x + 2060 | 0.99995 | 0.26–66.67 | 0.08 | 0.24 |
Corosolic acid | y = 6910 x + 1270 | 0.99991 | 0.26–66.67 | 0.16 | 0.48 |
Betulinic acid | y = 8970 x + 4310 | 0.99996 | 0.33–83.33 | 0.11 | 0.32 |
Oleanolic acid | y = 12,600 x + 8710 | 0.99994 | 1.56–200.00 | 0.21 | 0.65 |
Ursolic acid | y = 9040 x + 30,900 | 0.99998 | 3.13–800.00 | 0.26 | 0.82 |
Betulin | y = 10,600 x + 4350 | 0.99999 | 0.33–83.33 | 0.29 | 0.89 |
Erythrodiol | y = 12,800 x + 7740 | 0.99995 | 0.26–66.67 | 0.17 | 0.51 |
Uvaol | y = 9310 x + 4390 | 0.99993 | 0.26–66.67 | 0.30 | 0.99 |
Lupeol | y = 6740 x + 4740 | 0.99997 | 0.78–100.00 | 0.14 | 0.41 |
β-Amyrin | y = 7870 x + 4310 | 0.99999 | 0.78–100.00 | 0.14 | 0.43 |
β-Sitosterol | y = 3980 x + 3610 | 0.99992 | 0.78–100.00 | 0.37 | 1.13 |
α-Amyrin | y = 6470 x + 9440 | 0.99999 | 1.56–200.00 | 0.24 | 0.73 |
Friedelin | y = 1320 x + 5390 | 0.99991 | 1.56–100.00 | 0.65 | 1.78 |
Compound | Precision (% RSD) | Total Repeatability (% RSD, n = 18) | Proposed Acceptable Total Repeatability (% RSD) | |
---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 3) | |||
Maslinic acid | 0.47 | 0.68 | 0.78 | 1.17 |
Corosolic acid | 0.54 | 1.05 | 1.06 | 1.28 |
Betulinic acid | 0.42 | 0.45 | 0.67 | 1.33 |
Oleanolic acid | 0.46 | 0.98 | 1.01 | 1.15 |
Ursolic acid | 0.68 | 0.66 | 0.79 | 1.14 |
Betulin | 0.44 | 0.96 | 0.75 | 1.33 |
Erythrodiol | 0.49 | 0.43 | 0.86 | 1.16 |
Uvaol | 0.58 | 0.69 | 1.00 | 1.17 |
Lupeol | 0.28 | 0.32 | 0.35 | 1.26 |
β-Amyrin | 0.67 | 0.63 | 0.54 | 1.24 |
β-Sitosterol | 0.32 | 0.39 | 0.63 | 1.27 |
α-Amyrin | 0.47 | 0.90 | 0.72 | 1.27 |
Friedelin | 0.80 | 0.81 | 1.09 | 1.23 |
Compound | Low Concentration of Range | Medium Concentration of Range | High Concentration of Range | |||
---|---|---|---|---|---|---|
% Recovery | % RSD | % Recovery | % RSD | % Recovery | % RSD | |
Maslinic acid | 94.70 | 0.22 | 103.89 | 0.17 | 99.84 | 0.12 |
Corosolic acid | 100.72 | 0.83 | 105.26 | 1.04 | 99.39 | 0.35 |
Betulinic acid | 102.23 | 0.96 | 100.19 | 0.26 | 99.65 | 0.16 |
Oleanolic acid | 100.93 | 0.76 | 101.52 | 0.71 | 100.65 | 0.13 |
Ursolic acid | 104.48 | 0.65 | 100.99 | 0.86 | 98.64 | 0.66 |
Betulin | 102.92 | 0.63 | 100.50 | 0.70 | 99.88 | 0.23 |
Erythrodiol | 104.74 | 1.07 | 103.35 | 0.24 | 99.95 | 0.09 |
Uvaol | 95.96 | 1.12 | 104.39 | 1.03 | 100.09 | 0.08 |
Lupeol | 102.78 | 0.88 | 105.81 | 0.25 | 99.96 | 0.12 |
β-Amyrin | 103.62 | 0.57 | 103.84 | 1.20 | 100.03 | 0.07 |
β-Sitosterol | 99.30 | 0.73 | 104.87 | 1.00 | 99.48 | 0.28 |
α-Amyrin | 98.88 | 0.76 | 104.10 | 0.82 | 99.39 | 0.37 |
Friedelin | 104.61 | 1.16 | 104.93 | 1.07 | 101.63 | 0.53 |
Compound | Lingonberry Leaves | Lingonberry Fruits | Lingonberry Flowers |
---|---|---|---|
Maslinic acid | 37.26 ± 0.78 a | 39.78 ± 0.88 a,b | 18.71 ± 0.39 a |
Corosolic acid | 95.92 ± 2.97 a | 63.50 ± 1.71 a,b | 43.74 ± 1.01 a |
Betulinic acid | NQ | 17.94 ± 0.41 a,b | NQ |
Oleanolic acid | 351.07 ± 10.74 b | 1498.16 ± 45.13 c | 1607.48 ± 40.11 b |
Ursolic acid | 1627.60 ± 60.33 c | 7921.91 ± 299.58 d | 7792.01 ± 256.13 c |
Sum of triterpenoid acids | 2111.85 | 9541.29 | 9461.94 |
Betulin | 756.24 ± 20.42 d | 753.67 ± 16.58 e,f | 546.89 ± 15.86 d |
Erythrodiol | 87.61 ± 2.80 a | 6.36 ± 0.08 a | 27.49 ± 0.99 a |
Uvaol | 328.54 ± 11.17 b | 45.08 ± 0.95 a,b | 75.81 ± 2.20 a |
Lupeol | 638.28 ± 18.51 e | 547.69 ± 15.34 e | 17.08 ± 0.56 a |
β-Amyrin | 220.38 ± 7.27 f | 232.17 ± 4.88 b | 49.71 ± 1.34 a |
α-Amyrin | 2052.25 ± 79.18 i | 770.42 ± 20.13 e,f | 201.57 ± 4.51 f |
Friedelin | 302.28 ± 9.37 b,f | 592.13 ± 13.03 e | 37.89 ± 1.01 a |
Sum of neutral triterpenoids | 4385.58 | 2947.52 | 956.44 |
β-Sitosterol | 522.82 ± 15.68 g | 909.07 ± 31.82 f | 761.68 ± 25.90 e |
Total identified | 7020.25 | 13,397.88 | 11,180.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilkickyte, G.; Raudone, L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L. Molecules 2021, 26, 1645. https://doi.org/10.3390/molecules26061645
Vilkickyte G, Raudone L. Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L. Molecules. 2021; 26(6):1645. https://doi.org/10.3390/molecules26061645
Chicago/Turabian StyleVilkickyte, Gabriele, and Lina Raudone. 2021. "Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L." Molecules 26, no. 6: 1645. https://doi.org/10.3390/molecules26061645
APA StyleVilkickyte, G., & Raudone, L. (2021). Optimization, Validation and Application of HPLC-PDA Methods for Quantification of Triterpenoids in Vaccinium vitis-idaea L. Molecules, 26(6), 1645. https://doi.org/10.3390/molecules26061645