Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications
Abstract
:1. Introduction
2. Polymer Enhancements
2.1. Copolymers and Polymer Blends
2.2. Orientation
3. Composite Materials
3.1. Particulate Bioceramics
3.2. Glass Fibres
4. Surface Enhancement
4.1. Overview of Surface Enhancements
- Hydrophilicity;
- ionic charge/pH;
- adhesion of microorganisms;
- adsorption of molecules;
- permeation of molecules;
- roughness;
- impurities;
- chemical/ biological reaction kinetics.
4.2. Surface Enhancements of Polyesters for Bone Fixation
5. Current Market Products
6. Final Considerations and Perspective
- Modifying the modulus, to allow either the stiffness of the device to be changed, or to allow stiffness to be maintained whilst using less material.
- Modifying the strength, again to change the strength of the device or to allow the strength to be maintained whilst using less material.
- Making the material less brittle, to avoid brittle failure in use or when fitting the device.
- Changing the degradation rate of the material to alter the time for a device to resorb.
- Changing the degradation chemistry to avoid an excess of acidic degradation products.
- Improving the interaction between the device and native tissue.
- Copolymerisation and blending of polymers for greater flexibility and increased degradation rates, with use of glycolic acid and variations in the use of l- and d-lactic monomers or polymers, the most common approaches in clinically applied devices.
- Composite materials with particulate bioceramics offer benefits in terms of mitigating acidic degradation, and increasing degradation rate, whilst having a relatively small effect on the other properties, although care must be taken to ensure that the amount of particulate loading is not so high as to make the material brittle.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Polylactic acid | PLA |
Poly (l-lactic acid)m | PLLA |
Poly (l,d lactic acid) | PLDLA |
Poly (d-lactic acid) | PDLA |
Poly (d,l-lactic acid) | PDLLA |
Poly(l, dl-lactic acid) | PLDLLA |
Poly(glycolic acid) | PGA |
Poly-l-lactic-co-glycolic acid | PLGA |
Poly(lactic acid)- b-poly(lactide- co-caprolactone) | PLA-b-PLCL |
Poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) | PHBV |
Tri-calcium phosphate | TCP |
Calcium phosphate | CP |
nano/carbonated/hydroxyapatite | n/C/HA |
Poly(trimethylene carbonate) | PTMC |
References
- Alexander, R.; Theodos, L. Fracture of the bone-grafted mandible secondary to stress shielding: Report of a case and review of the literature. J. Oral Maxillofac. Surg. 1993, 51, 695–697. [Google Scholar] [CrossRef]
- Kennady, M.C.; Tucker, M.R.; Lester, G.E.; Buckley, M.J. Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation. Int. J. Oral Maxillofac. Surg. 1989, 18, 307–310. [Google Scholar] [CrossRef]
- Hanson, J.; Lovald, S.; Cowgill, I.; Erdman, M.; Diamond, B. National hardware removal rate associated with internal fixation of facial fractures. J. Oral Maxillofac. Surg. 2011, 69, 1152–1158. [Google Scholar] [CrossRef]
- On, S.-W.; Cho, S.-W.; Byun, S.-H.; Yang, B.-E. Bioabsorbable Osteofixation Materials for Maxillofacial Bone Surgery: A Review on Polymers and Magnesium-Based Materials. Biomedicines 2020, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Geddes, L.; Carson, L.; Themistou, E.; Buchanan, F. In Vitro Inflammatory Response Evaluation Of Pre-Ddegraded Bioresorbable Polymers Used In Trauma Fixation And Tissue Regeneration Applications. Orthop. Proc. 2018, 100-B, 62. [Google Scholar]
- Böstman, O.; Pihlajamäki, H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: A review. Biomaterials 2000, 21, 2615–2621. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Wu, D.; Chen, X.; Chen, T.; Ding, C.; Wu, W.; Li, J. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Francois, E.; Dorcemus, D.; Nukavarapu, S. Biomaterials and scaffolds for musculoskeletal tissue engineering. In Regenerative Engineering of Musculoskeletal Tissues and Interfaces; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 3–23. [Google Scholar] [CrossRef]
- Al-Sukhun, J.; Törnwall, J.; Lindqvist, C.; Kontio, R. Bioresorbable poly-l/dl-lactide (P[L/DL]LA 70/30) plates are reliable for repairing large inferior orbital wall bony defects: A pilot study. J. Oral Maxillofac. Surg. 2006, 64, 47–55. [Google Scholar] [CrossRef]
- Barber, F.A. Poly-d,l-lactide interference screws for anterior cruciate ligament reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2005, 21, 804–808. [Google Scholar] [CrossRef]
- Pietrzak, W.S.; Caminear, D.S.; Perns, S.V. Mechanical characteristics of an absorbable copolymer internal fixation pin. J. Foot Ankle Surg. 2002, 41, 379–388. [Google Scholar] [CrossRef]
- Miller, R.A.; Brady, J.M.; Cutright, D.E. Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. J. Biomed. Mater. Res. 1977, 11, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, H.; Ye, L.; Coates, P.; Caton-Rose, F.; Zhao, X. Long-chain branched poly(lactic acid)-b-poly(lactide-co-caprolactone): Structure, viscoelastic behavior, and triple-shape memory effect as smart bone fixation material. Ind. Eng. Chem. Res. 2020, 59, 4524–4532. [Google Scholar] [CrossRef]
- Ferreira, B.M.P.; Duek, E.A.R. Pins Composed of Poly(l-Lactic Acid)/Poly(3-Hydroxybutyrate-Co-Hydroxyvalerate) PLLA/PHBV Blends: Degradation in Vitro. J. Appl. Biomater. Biomech. 2005, 3, 50–60. [Google Scholar] [PubMed]
- Motta, A.C.; De Rezende Duek, E.A. Synthesis and characterization of a novel terpolymer based on l-lactide, d,l-lactide and trimethylene carbonate. Mater. Res. 2014, 17, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Srisuwan, Y.; Baimark, Y.; Suttiruengwong, S. Toughening of Poly(l-lactide) with Blends of Poly(ε-caprolactone-co-l-lactide) in the Presence of Chain Extender. Int. J. Biomater. 2018. [Google Scholar] [CrossRef] [Green Version]
- Petisco-Ferrero, S.; Etxeberria, A.; Sarasua, J.R. Mechanical properties and state of miscibility in poly(racd,l-lactide-co-glycolide)/(l-lactide-co-ε-caprolactone) blends. J. Mech. Behav. Biomed. Mater. 2017, 71, 372–382. [Google Scholar] [CrossRef]
- Tams, J.; Joziasse, C.A.P.; Bos, R.R.M.; Rozema, F.R.; Grijpma, D.W.; Pennings, A.J. High-impact poly(l/d-lactide) for fracture fixation: In vitro degradation and animal pilot study. Biomaterials 1995, 16, 1409–1415. [Google Scholar] [CrossRef]
- Naseem, R.; Zhao, L.; Liu, Y.; Silberschmidt, V.V. Experimental and computational studies of poly-l-lactic acid for cardiovascular applications: Recent progress. Mech. Adv. Mater. Mod. Process. 2017, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Haers, P.E.; Suuronen, R.; Lindqvist, C.; Sailer, H. Biodegradable polylactide plates and screws in orthognathic surgery: Technical note. J. Cranio-Maxillofac. Surg. 1998, 26, 87–91. [Google Scholar] [CrossRef]
- Bos, R.R.M.; Rozema, F.R.; Boering, G.; Nijenhuis, A.J.; Pennings, A.J.; Jansen, H.W.B. Bone-plates and screws of bioabsorbable poly (l-lactide) An animal pilot study. Br. J. Oral Maxillofac. Surg. 1989, 27, 467–476. [Google Scholar] [CrossRef]
- Pruitt, L.A.; Chakravartula, A.M. Mechanics of Biomaterials: Fundamental Principles for Implant Design; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Röhm, E.; Aldrich, S. RESOMER® Biodegradable Polymers for Medical Device Applications; Merck KGaA: Darmstadt, Germany, 2015. [Google Scholar]
- Quynh, T.M.; Mitomo, H.; Nagasawa, N.; Wada, Y.; Yoshii, F.; Tamada, M. Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability. Eur. Polym. J. 2007, 43, 1779–1785. [Google Scholar]
- Wang, Y.; Zhang, X. Vascular restoration therapy and bioresorbable vascular scaffold. Regen. Biomater. 2014, 1, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.A.; Buchanan, F.J.; Orr, J.F.; Farrar, D.F.; Dickson, G.R. Degradation of poly-l-lactide. Part 2: Increased temperature accelerated degradation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2004, 218, 321–330. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Pina, S.; Ferreira, J.M.F. Bioresorbable plates and screws for clinical applications: A review. J. Healthc. Eng. 2012, 3, 243–260. [Google Scholar] [CrossRef] [Green Version]
- NPTEL. Stereoisomers of Lactic Acid. Available online: http://nptel.ac.in/courses/116102006/Flash/6.1%20figure%202.jpg (accessed on 13 September 2020).
- Barnes, G. REGENESORB Absorbable Biocomposite Material A Unique Formulation of Materials with Long Histories of Clinical Use; Smith & Nephew, Inc.: Andover, MA, USA, 2013. [Google Scholar]
- Smit, T.H.; Engels, T.A.P.; Wuisman, P.I.; Govaert, L.E. Time-Dependent Mechanical Strength of 70/30 Poly(l,dl-lactide) Shedding Light on the Premature Failure of Degradable Spinal Cages. Spine 2008, 33, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Kanno, T.; Sukegawa, S.; Furuki, Y.; Nariai, Y.; Sekine, J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn. Dent. Sci. Rev. 2018, 54, 127–138. [Google Scholar] [CrossRef]
- Slager, J.; Domb, A.J. Biopolymer stereocomplexes. Adv. Drug Deliv. Rev. 2003, 55, 549–583. [Google Scholar] [CrossRef]
- Tsuji, H.; Horii, F.; Hyon, S.H.; Ikada, Y. Stereocomplex Formation between Enantiomeric Poly(lactic acid)s. 2. Stereocomplex Formation in Concentrated Solutions. Macromolecules 1991, 24, 2719–2724. [Google Scholar] [CrossRef]
- Yamane, H.; Sasai, K. Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer (Guildf) 2003, 44, 2569–2575. [Google Scholar] [CrossRef]
- Furuhashi, Y.; Kimura, Y.; Yamane, H. Higher order structural analysis of stereocomplex-type poly(lactic acid) melt-spun fibers. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 218–228. [Google Scholar] [CrossRef]
- Ylikontiola, L.; Sundqvuist, K.; Sàndor, G.K.B.; Törmälä, P.; Ashammakhi, N. Self-reinforced bioresorbable poly-l/dl-Lactide [SR-P(L/DL)LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: A pilot study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 312–317. [Google Scholar] [CrossRef]
- Weisberger, E.C.; Eppley, B.L. Resorbable Fixation Plates in Head and Neck Surgery. Laryngoscope 1997, 107, 716–719. [Google Scholar] [CrossRef]
- Lim, H.-Y.; Jung, C.-H.; Kim, S.-Y.; Cho, J.-Y.; Ryu, J.-Y.; Kim, H.-M. Comparison of resorbable plates and titanium plates for fixation stability of combined mandibular symphysis and angle fractures. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 285. [Google Scholar] [CrossRef] [Green Version]
- Ongodia, D.; Li, Z.; Xing, W.Z.; Li, Z. Resorbable Plates for Fixation of Complicated Mandibular Fractures in Children. J. Maxillofac. Oral Surg. 2014, 13, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Majola, A.; Vainionpää, S.; Vihtonen, K.; Vasenius, J.; Törmälä, P.; Rokkanen, P. Intramedullary fixation of cortical bone osteotomies with self-reinforced polylactic rods in rabbits. Int. Orthop. 1992, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yu, L.; Liu, H.; Chen, L. Development of self-reinforced polymer composites. Progress Polymer Sci. 2012, 37, 767–780. [Google Scholar] [CrossRef]
- Tormala, P.; Rokkanen, P.; Laiho, J.; Tamminmaki, M.; Vainionpaa, S. Material for Osteosynthesis Devices. U.S. Patent 4,743,257, 8 May 1985. [Google Scholar]
- Wright-Charlesworth, D.D.; Miller, D.M.; Miskioglu, I.; King, J.A. Nanoindentation of injection molded PLA and self-reinforced composite PLA after in vitro conditioning for three months. J. Biomed. Mater. Res. Part A 2005, 74, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Rokkanen, P. Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation: Strength and strength retention in the bone and subcutaneous tissue of rabbits. J. Mater. Sci. Mater. Med. 1992, 3, 43–47. [Google Scholar]
- Moure, C.; Qassemyar, Q.; Dunaud, O.; Neiva, C.; Testelin, S.; Devauchelle, B. Skeletal stability and morbidity with self-reinforced P (l/dL) la resorbable osteosynthesis in bimaxillary orthognathic surgery. J. Cranio-Maxillofac. Surg. 2012, 40, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Waris, E.; Ninkovic, M.; Harpf, C.; Ninkovic, M.; Ashammakhi, N. Self-reinforced bioabsorbable miniplates for skeletal fixation in complex hand injury: Three case reports. J. Hand Surg. Am. 2004, 29, 452–457. [Google Scholar] [CrossRef]
- Beslikas, T.; Papavasiliou, K.; Sideridis, A.; Kapetanos, G.; Papavasiliou, V. The use of bio-absorbable self-reinforced polylactic acid co-polymer fixation plates and screws in the treatment of children’s forearm fractures. Orthop. Proc. 2018, 86-B, 162. [Google Scholar]
- Shetye, S.S.; Miller, K.S.; Hsu, J.E.; Soslowsky, L.J. 7.18 Materials in tendon and ligament repair. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 314–340. [Google Scholar] [CrossRef]
- Caminear, D.S.; Pavlovich, R.; Pietrzak, W.S. Fixation of the chevron osteotomy with an absorbable copolymer pin for treatment of hallux valgus deformity. J. Foot Ankle Surg. 2005, 44, 203–210. [Google Scholar] [CrossRef]
- Inion CPSTM Fixation System—Inion. Available online: https://www.inion.com/product/inion-cps-fixation-system/ (accessed on 29 June 2020).
- Ballon, A.; Laudemann, K.; Sader, R.; Landes, C.A. Segmental stability of resorbable P(L/DL)LA-TMC osteosynthesis versus titanium miniplates in orthognatic surgery. J. Cranio-Maxillofac. Surg. 2012, 40, e408–e414. [Google Scholar] [CrossRef]
- Gogolewvki, S. Resorbable polymers for internal fixation. Clin. Mater. 1992, 10, 13–20. [Google Scholar] [CrossRef]
- Weiler, W.; Gogolewski, S. Enhancement of the mechanical properties of polylactides by solid-state extrusion: I. Poly(d-lactide). Biomaterials 1996, 17, 529–535. [Google Scholar] [CrossRef]
- Weir, N.A.; Buchanan, F.J.; Orr, J.F.; Farrar, D.F.; Boyd, A. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials 2004, 25, 3939–3949. [Google Scholar] [CrossRef]
- Harris, A.M.; Lee, E.C. Improving mechanical performance of injection molded PLA by controlling crystallinity. J. Appl. Polym. Sci. 2008, 107, 2246–2255. [Google Scholar] [CrossRef]
- Winkler, T.; Sass, F.A.; Duda, G.N.; Schmidt-Bleek, K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Jt. Res. 2018, 7, 232–243. [Google Scholar] [CrossRef]
- Surmenev, R.A.; Surmeneva, M.A.; Ivanova, A.A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review. Acta Biomater. 2014, 10, 557–579. [Google Scholar] [CrossRef]
- Ang, K.C.; Leong, K.F.; Chua, C.K.; Chandrasekaran, M. Compressive properties and degradability of poly(ɛ-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J. Biomed. Mater. Res. Part A 2007, 80A, 655–660. [Google Scholar] [CrossRef]
- Liuyun, J.; Chengdong, X.; Dongliang, C.; Lixin, J.; Xiubing, P. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite. Appl. Surf. Sci. 2012, 259, 72–78. [Google Scholar] [CrossRef]
- Liuyun, J.; Chengdong, X.; Lixin, J.; Dongliang, C.; Qing, L. Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites. Mater. Res. Bull. 2013, 48, 1233–1238. [Google Scholar] [CrossRef]
- Esmaeili, S.; Hossein, A.A.; Motififard, M.; Saber-Samandari, S.; Montazeran, A.H.; Bigonah, M.; Sheikhbahaei, E.; Khandan, A. A porous polymeric-hydroxyapatite scaffold used for femur fractures treatment: Fabrication, analysis, and simulation. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 123–131. [Google Scholar] [CrossRef]
- Ivorra-Martinez, J.; Quiles-Carrillo, L.; Boronat, T.; Torres-Giner, S.; Covas, J.A. Assessment of the Mechanical and Thermal Properties of Injection-Molded Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Hydroxyapatite Nanoparticles Parts for Use in Bone Tissue Engineering. Polymers 2020, 12, 1389. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Zhang, P.; He, C.; Qiu, X.; Liu, A.; Chen, L.; Chen, X.; Jing, X. Nano-composite of poly(l-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials 2005, 26, 6296–6304. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Zhang, P.; Liu, A.; Chen, L.; Chen, X.; Jing, X. Composites of poly(lactide-co-glycolide) and the surface modified carbonated hydroxyapatite nanoparticles. J. Biomed. Mater. Res. Part A 2007, 81A, 515–522. [Google Scholar] [CrossRef]
- Jones, N.L.; Cooper, J.J.; Waters, R.D.; Williams, D.F.; Agrawal, C.M.; Parr, J.E.; Lin, S.T. Resorption Profile and Biological Response of Calcium Phosphate filled PLLA and PHB7V. In Synthetic Bioabsorbable Polymers for Implants; ASTM STP 1396; ASTM International: West Conshohocken, PA, USA, 2000. [Google Scholar]
- Bou-Francis, A.; Piercey, M.; Al-Qatami, O.; Mazzanti, G.; Khattab, R.; Ghanem, A. Polycaprolactone blends for fracture fixation in low load-bearing applications. J. Appl. Polym. Sci. 2020, 137, 48940. [Google Scholar] [CrossRef]
- Bou-Francis, A.; Ghanem, A. Standardized methodology for in vitro assessment of bone-to-bone adhesion strength. Int. J. Adhes. Adhes. 2017, 77, 96–101. [Google Scholar] [CrossRef]
- Carvalho, S.M.; Oliveira, A.A.R.; Lemos, E.M.F.; Pereira, M.M. Bioactive Glass Nanoparticles for Periodontal Regeneration and Applications in Dentistry. In Nanobiomaterials in Clinical Dentistry; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 299–322. [Google Scholar] [CrossRef]
- Navarro, M.; Ginebra, M.P.; Planell, J.A. Cellular response to calcium phosphate glasses with controlled solubility. J. Biomed. Mater. Res. Part A 2003, 67, 1009–1015. [Google Scholar] [CrossRef]
- Zakir Hossain, K.M.; Felfel, R.M.; Grant, D.M.; Ahmed, I. Chapter 11: Phosphate Glass Fibres and Their Composites. In RSC Smart Materials; 2017-January; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 257–285. [Google Scholar]
- Parsons, A.J.; Ahmed, I.; Haque, P.; Fitzpatrick, B.; Niazi, M.I.K.; Walker, G.S.; Rudd, C.D. Phosphate Glass Fibre Composites for Bone Repair. J. Bionic Eng. 2009, 6, 318–323. [Google Scholar] [CrossRef]
- Melo, P.; Tarrant, E.; Swift, T.; Townshend, A.; German, M.; Ferreira, A.M.; Gentile, P.; Dalgarno, K. Short phosphate glass fiber—PLLA composite to promote bone mineralization. Mater. Sci. Eng. C 2019, 104, 109929. [Google Scholar] [CrossRef]
- Zhu, C.; Ahmed, I.; Parsons, A.; Wang, Y.; Tan, C.; Liu, J.; Rudd, C.; Liu, X. Novel bioresorbable phosphate glass fiber textile composites for medical applications. Polym. Compos. 2018, 39, E140–E151. [Google Scholar] [CrossRef]
- Ahmed, I.; Jones, I.A.; Parsons, A.J.; Bernard, J.; Farmer, J.; Scotchford, C.A.; Walker, G.S.; Rudd, C.D. Composites for bone repair: Phosphate glass fibre reinforced PLA with varying fibre architecture. J. Mater. Sci. Mater. Med. 2011, 22, 1825–1834. [Google Scholar] [CrossRef]
- Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Walker, G.S.; Rudd, C.D. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods. J. Mech. Behav. Biomed. Mater. 2011, 4, 1462–1472. [Google Scholar] [CrossRef] [PubMed]
- Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Harper, L.T.; Rudd, C.D.; Ahmed, I.; Parsons, A.J.; Harper, L.T.; Rudd, C.D. Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails. J. Mater. Sci. 2012, 47, 4884–4894. [Google Scholar] [CrossRef]
- Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Rudd, C.D. Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation. J. Mech. Behav. Biomed. Mater. 2013, 17, 76–88. [Google Scholar] [CrossRef]
- Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Rudd, C.D. Bioresorbable composite screws manufactured via forging process: Pull-out, shear, flexural and degradation characteristics. J. Mech. Behav. Biomed. Mater. 2013, 18, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Cronin, P.S.; Neel, E.A.; Parsons, A.J.; Knowles, J.C.; Rudd, C.D. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 89, 18–27. [Google Scholar] [CrossRef]
- Ahmed, I.; Parsons, A.J.; Palmer, G.; Knowles, J.C.; Walker, G.S.; Rudd, C.D. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater. 2008, 4, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Felfel, R.M.; Ahmed, I.; Parsons, A.J.; Haque, P.; Walker, G.S.; Rudd, C.D. Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J. Biomater. Appl. 2012, 26, 765–789. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, S.D.; Pilliar, R.M.; Santerre, J.P. Fabrication of a biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composite for high load bearing osteosynthesis applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 178–186. [Google Scholar] [CrossRef]
- Hasan, M.S.; Ahmed, I.; Parsons, A.J.; Rudd, C.D.; Walker, G.S.; Scotchford, C.A. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix. J. Biomater. Appl. 2012. [Google Scholar] [CrossRef]
- dos Santos, T.M.B.K.; Merlini, C.; Aragones, Á.; Fredel, M.C. Manufacturing and characterization of plates for fracture fixation of bone with biocomposites of poly (lactic acid-co-glycolic acid) (PLGA) with calcium phosphates bioceramics. Mater. Sci. Eng. C 2019, 103, 109728. [Google Scholar] [CrossRef] [PubMed]
- Bosco, R.; Van Den Beucken, J.V.; Leeuwenburgh, S.; Jansen, J. Surface engineering for bone implants: A trend from passive to active surfaces. Coatings 2012, 2, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.S. Surface modification of polymers: Physical, chemical, mechanical and biological methods. Macromol. Symp. 1996, 101, 443–454. [Google Scholar] [CrossRef]
- Ul Ahad, I.; Bartnik, A.; Fiedorowicz, H.; Kostecki, J.; Korczyc, B.; Ciach, T.; Brabazon, D. Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J. Biomed. Mater. Res. Part A 2014, 102, 3298–3310. [Google Scholar] [CrossRef] [Green Version]
- Mayekar, P.C.; Castro-Aguirre, E.; Auras, R.; Selke, S.; Narayan, R. Effect of nano-clay and surfactant on the biodegradation of poly(lactic acid) films. Polymers 2020, 12, 311. [Google Scholar] [CrossRef] [Green Version]
- Low, Y.J.; Andriyana, A.; Ang, B.C.; Zainal Abidin, N.I. Bioresorbable and degradable behaviors of PGA: Current state and future prospects. Polym. Eng. Sci. 2020, 60, 25508. [Google Scholar] [CrossRef]
- Duta, L.; Popescu, A. Current Status on Pulsed Laser Deposition of Coatings from Animal-Origin Calcium Phosphate Sources. Coatings 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Moraczewski, K.; Rytlewski, P.; Malinowski, R.; Zenkiewicz, M. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods. Appl. Surf. Sci. 2015, 346, 11–17. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Favia, P.; D’Agostino, R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coat. Technol. 1998, 98, 1102–1106. [Google Scholar] [CrossRef]
- Jacobs, T.; Declercq, H.; De Geyter, N.; Cornelissen, R.; Dubruel, P.; Leys, C.; Beaurain, A.; Payen, E.; Morent, R. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J. Mater. Sci. Mater. Med. 2013, 24, 469–478. [Google Scholar] [CrossRef]
- Källrot, M.; Edlund, U.; Albertsson, A.C. Surface functionalization of degradable polymers by covalent grafting. Biomaterials 2006, 27, 1788–1796. [Google Scholar] [CrossRef]
- Mutch, A.L.; Grøndahl, L. Challenges for the development of surface modified biodegradable polyester biomaterials: A chemistry perspective. Biointerphases 2018, 13, 06D501. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Lech, A.; Butruk-Raszeja, B.A.; Ciach, T.; Lawniczak-Jablonska, K.; Kuzmiuk, P.; Bartnik, A.; Wachulak, P.; Fiedorowicz, H. Surface modification of plla, ptfe and pvdf with extreme ultraviolet (Euv) to enhance cell adhesion. Int. J. Mol. Sci. 2020, 21, 9679. [Google Scholar] [CrossRef] [PubMed]
- Neděla, O.; Slepička, P.; Švorčík, V. Surface Modification of Polymer Substrates for Biomedical Applications. Materials 2017, 10, 1115. [Google Scholar] [CrossRef]
- Rudolph, A.; Teske, M.; Illner, S.; Kiefel, V.; Sternberg, K.; Grabow, N. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity. PLoS ONE 2015, 10, 142075. [Google Scholar]
- Bu, Y.; Ma, J.; Bei, J.; Wang, S. Surface Modification of Aliphatic Polyester to Enhance Biocompatibility. Front. Bioeng. Biotechnol. 2019, 7, 98. [Google Scholar] [CrossRef]
- Yang, J.; Bei, J.; Wang, S. Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 2002, 23, 2607–2614. [Google Scholar] [CrossRef]
- Yang, J.; Bei, J.; Wang, S. Improving cell affinity of poly(d,l-lactide) film modified by anhydrous ammonia plasma treatment. Polym. Adv. Technol. 2002, 13, 220–226. [Google Scholar] [CrossRef]
- Gomathi, N.; Sureshkumar, A.; Neogi, S. RF plasma-treated polymers for biomedical applications. Curr. Sci. 2008, 94, 1478–1486. [Google Scholar]
- Morintale, E.; Constantinescu, C.-D.; Dinescu, M. Thin films development by pulsed laser-assisted deposition. Ann. Univ. Craiova Phys. 2010, 20, 43–56. [Google Scholar]
- Janorkar, A.V.; Metters, A.T.; Hirt, D.E. Degradation of poly(l-lactide) films under ultraviolet-induced photografting and sterilization conditions. J. Appl. Polym. Sci. 2007, 106, 1042–1047. [Google Scholar] [CrossRef]
- Da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic acid: Synthesis and biomedical applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [Google Scholar] [CrossRef] [Green Version]
- Bonartsev, A.P.; Bonartseva, G.A.; Reshetov, I.V.; Kirpichnikov, M.P.; Shaitan, K.V. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Nat. 2019, 11, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Akhavan, B.; Wise, S.G.; Bilek, M.M.M. A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions. Prog. Mater. Sci. 2019, 106, 100588. [Google Scholar] [CrossRef]
Polymer | Properties | Study Type | Degradation | Clinical Application | Reference |
---|---|---|---|---|---|
Poly-l/dl-Lactide [(P[L/DL]LA)] (70/30) Copolymer | Sufficient to support fractures, bendable | In vivo, human | Consistent with bone healing | Orbital fractures | [11] |
P(D(2%),L(98%))lactide Copolymer | Sufficient to support fractures, bendable | In vivo, human | Consistent with bone healing | Interference fixation screws for anterior cruciate ligament surgery | [12] |
PLGA (l-lactide 82: glycolide 18) Copolymer | 7 GPa Young’s modulus 50% by 12 weeks | In vitro | 50% decline in mechanical properties by 12 weeks, peak retention at 8 weeks | Choice of material in foot surgery | [13] |
PLGA/PLA (100:0, 75:25, 50:50, 25:75, 0:100) Copolymer | N/A | In vivo, rodent | 2 weeks–6 months | Oral resorbable implants | [14] |
Poly(lactic acid)- b-poly(lactide- co-caprolactone) (PLA-b-PLCL) 30 wt% PLCL Copolymer | 173 MPa tensile strength 5.4 GPa Young’s modulus) | In vitro | N/A | Smart bone fixation material with shape memory effect | [15] |
PLLA/PHBV (40:60) Blend | Improved elasticity compared to PLLA | In vitro | PLLA: 12 weeks, PHBV: 53 weeks | Orthopaedics | [16] |
P(L/D,L)lactide/TMC (56:24:20 and 49:21:30) Copolymer | Decrease in Young’s modulus and tensile strength compared to P(L/D,L)LA (0.9 GPa from 3.1, 27 MPa from 50 MPa) | In vitro | N/A | Soft tissue engineering | [17] |
Poly-e-caprolactone-co-l-lactide (100:0, 90:10, 80:20, 60:40) compatibilised with 2.0 phr Joncryl® Blend | Young’s modulus/stress at break: 100:0—1.5 GPa/57.6 MPa 90:10—1.2 GPa/44.8 MPa 80:20—1.1 GPa/41.8 MPa 60:40—0.32 GPa/14.6 MPa | In vitro | N/A | Long term implantable devices, tissue engineering, drug delivery | [18] |
Poly(d,l-lactide-co-glycolide)/(l-lactide-co-ε-caprolactone) (PDLGA/PLCL) PDLGA(dl-lactide/glycolide, 53/47 M ratio), 70/30 l-lactide/ɛ-caprolactone M ratio PDLGA/PLCL (80:20, 60:40, 40:60, 20:80) Blend | Young’s modulus/Yield strength PDLGA—1.2 GPa/36 MPa PDLGA:PLCL(80:20)—1.1 GPa/28 MPa PDLGA:PLCL (60:40)—0.6 GPa/19 MPa PDLGA:PLCL (40:60)—0.02 GPa/5.6 MPa PDLGA:PLCL (20:80)—7.1 MPa/- | In vitro | Degradation accelerated by larger amounts of PLDGA. PDLGA has a lower molecular weight compared with PLCL; therefore, favours an increased hydrolytic degradation rate | Minimally invasive surgery, shape memory polymer | [19] |
PDLLA/P(TMC-CL) (Poly(l/d-lactide) (85:15)/20% wt (50/50 trimethylene carbonate-co-e-caprolactone) Blend | Decrease in tensile strength (50 MPa (PLDLA) in comparison to 30 MPa (PLDLA20%P(TMC)CL)), bending modulus increase (2.7 GPa to 4.9 GPa), elongation increase (7.5% to 130%), increase in impact strength | In vitro and in vivo, canine | No significant mass loss up to 45 weeks in vitro, in vivo healing within 12 weeks, screws and plates loosened after 18 weeks | Single fractures of the mandible | [20] |
Process | Advantages | Disadvantages |
---|---|---|
Chemical grafting | Exposure of functional groups on material surface. Long and stable effects produced. | Limited by the functional groups on the surface. Chemical modifications (i.e., aminolysis/hydrolysis) may be required prior to fixation of biomolecules, causing destruction of the topological structure of the surface. |
Pulsed Laser Deposition (PLD) | Simple, versatile, rapid, cost effective. Precise control of the thickness and morphology of the films deposited. | Small area of structural and thickness uniformity. |
Photografting | Solvent free approach. Non-destructive Surface topography maintains a thin graft layer. | May affect the material bulk properties and induce material degradation. |
Extreme UV radiation (EUV) | Penetration depth limited (<100 nm in upper layer of polymers), affect surface layers only. Strong interaction of EUV photons with material. | Lack of commercially available lab sources of EUV radiation. High equipment costs. |
Plasma Modification | Simple and widely used. Bulk properties are not affected. | Size of treated material restricted by the size of the treatment chamber. |
Physical coating | Simple and effective methodology. | Bonding relatively weak, specifically in aqueous environments. |
Company | Device | Application | Material |
---|---|---|---|
CONMED | SmartPin/SmartPin PDX | Foot and ankle. | PLA |
SmartNail | Foot and ankle. | PLA | |
BioScrew | Knee (tibial/femoral applications). Bioabsorbable interference screw. | PLA | |
BioMini-Revo | Shoulder. | PLA | |
J&J | RAPIDSORB | Resorbable plates, meshes and screws intended for use in fracture repair, and reconstructive procedure of the craniofacial skeleton. Implants resorbed in 12 m. | 85:15 poly(l-lactide-co-glycolide) |
ORTHOMESH | Resorbable graft containment system. | 85:15 poly(l-lactide-co-glycolide) | |
Stryker | SonicPin | Austin/chevron osteotomy. Maintain alignment and fixation of bone fractures, osteotomy, or bone grafts in hallux valgus applications in the presence of appropriate immobilisation (e.g. rigid fixation implants, cast and brace.) | PLDLLA |
Delta System | 8–13 months, craniofacial and mid-facial skeleton fixation. | P-L/D-LA/GA | |
Smith & Nephew | Regenesorb | Material used in orthopaedic applications. | PLGA with calcium sulphate and β-TCP |
SureTac III system | Shoulder. | ||
Teijin Medical Technologies | OSTEOTRANS-OT | Orthopaedic and thoracic surgery. Products include screw, pin, washer, interference screw, rib/sternum pin. | µ-HA and PLLA |
OSTEOTRANS-MX | Products include meshes and screws. Used in cranio, oral, and maxillofacial, plastic and reconstructive surgeries. | µ-HA and PLLA | |
FIXSORB | Used in cranial, oral, maxillofacial, plastic, and reconstructive surgeries. Products include screws, washers, pins, rods. | PLLA | |
FIXSORB MX | Used in cranial, oral, maxillofacial, plastic, and reconstructive surgeries. Products include plates and screws. | PLLA | |
Gunze (Japan) | GRAND FIX | Oral, craniomaxillofacial, and plastic surgery. Products include plates and screws (mini for plate locking and cortical full thread screws), rib pins (rib and sternum fixation) and pins, screws, and ACL screws. | PLLA |
Acumed (USA) | Biotrak Screws | Fixation for small bones and bone fragments in the upper and lower extremities, including fractures, fusions, and osteotomies. Composed of Biotrak helical nail, pin, standard, and mini screw. | PLLA |
Arthrex (USA) | Trim it spin Pin | Pins. Foot and ankle. | PLLA |
Takiron | Fixsorb | Fracture fixation, | PLLA/HA |
Biomet Arthrotek | Bio-Phase Reunite Screws, pins plates | Fracture fixation, | PLLA/PLG |
LactoSorb | PLLA/PGA |
Enhancement Strategy | Enhanced Polyester Material | Reference | Modified Properties |
---|---|---|---|
Self-reinforcement (oriented units) | SR-P(L/DL)LA | [40,49,50,51] | Strength and elasticity, thermal properties, degradation/absorption profile, retention of mechanical integrity |
SR-PLLA, SR-PDLLA/PLLA | [22,44] | ||
SR-PLA | [46,47,48] | ||
Copolymers/blends | PLA stereocomplexation | [37,38,39] | |
P(L/DL)LA (70:30) | [11] | ||
PDLA (2:98) | [12] | ||
PLLA/PGA | [13] | ||
PLA-b-PLCL | [15] | ||
PLLA/PHBV | [16] | ||
P(L,DL)LA/TMC | [17] | ||
PLLA/(PCL/LLA) | [18] | ||
PLDGA/PLCL | [19] | ||
PDLLA/P(TMC-CL) | [20] | ||
Tuning of thermoforming parameters, nucleating agents, thermal post-processing | PDLA | [57] | |
PLLA | [7,58] | Chain orientation and crystallinity | |
Bioceramic reinforced co/polyester composites | PLLA/TCP, PHBV/TCP | [69] | Strength and elasticity, thermal properties, degradation/absorption profile, retention of mechanical integrity, endowment of bioactivity (osteoinduction) |
PCL/HA | [62] | ||
PLGA/nHA | [63] | ||
PLLA/PLLA-grafted HA | [67] | ||
PLGA/PLGA grafted CHA | [68] | ||
P(3HB-co-3HHx)/nHA | [66] | ||
PLGA/nHA, TCP, Mg-CP, Sr-CP | [88] | ||
PLLA/phosphate glass fibres | [78,79,80,81,82,83] | ||
PCL/CP glass fibres | [84] | ||
PLA/CP (coupling agents) | [87] | ||
Surface functionalisation | Covalent grafting techniques on PLLA, PCL, PLGA, PTMC substrates | [96] | Surface topography and roughness, surface free energy, and chemistry to improve cell adhesion and proliferation and/or induce specific responses |
Chemical/plasma/laser on PLA substrates | [95,99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseem, R.; Tzivelekis, C.; German, M.J.; Gentile, P.; Ferreira, A.M.; Dalgarno, K. Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules 2021, 26, 992. https://doi.org/10.3390/molecules26040992
Naseem R, Tzivelekis C, German MJ, Gentile P, Ferreira AM, Dalgarno K. Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules. 2021; 26(4):992. https://doi.org/10.3390/molecules26040992
Chicago/Turabian StyleNaseem, Raasti, Charalampos Tzivelekis, Matthew J. German, Piergiorgio Gentile, Ana M. Ferreira, and Kenny Dalgarno. 2021. "Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications" Molecules 26, no. 4: 992. https://doi.org/10.3390/molecules26040992
APA StyleNaseem, R., Tzivelekis, C., German, M. J., Gentile, P., Ferreira, A. M., & Dalgarno, K. (2021). Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules, 26(4), 992. https://doi.org/10.3390/molecules26040992