Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis
Abstract
:1. Introduction
2. Results
2.1. Catalytic Mixtures Performance
2.2. Bio-Oil Characterisation
2.2.1. GC-MS Analysis
2.2.2. FTIR Analysis
2.2.3. Elemental Analysis
3. Materials and Methods
3.1. Materials
3.2. Catalytic Mixtures Synthesis
3.3. Experimental and Calculations
3.4. Products Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Plotkin, J.S. What’s New in Phenol Production. Am. Chem. Soc. 2016. Available online: https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/what-s-new-in-phenol-production-.html (accessed on 15 November 2020).
- Jiang, G.; Nowakowski, D.J.; Bridgwater, A.V. A systematic study of the kinetics of lignin pyrolysis. Thermochem. Acta 2009, 498, 61–66. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Sekab. Biorefinery Technology. 2019. Available online: https://www.sekab.com/en/products-services/biorefinery/ (accessed on 4 December 2020).
- Trubetskaya, A.; Lange, H.; Wittgens, B.; Brunsvik, A.; Crestini, C.; Rova, U.; Christakopoulos, P.; Leahy, J.J.; Matsakas, L. Structural and Thermal Characterization of Novel Organosolv Lignins from Wood and Herbaceous Sources. Processes 2020, 8, 860. [Google Scholar] [CrossRef]
- Magalhães, D.; Gürel, K.; Matsakas, L.; Christakopoulos, P.; Pisano, I.; Leahy, J.J.; Kazanç, F.; Trubetskaya, A. Prediction of yields and composition of char from fast pyrolysis of commercial lignocellulosic materials, organosolv fractionated and torrefied olive stones. Fuel 2021, 289, 119862. [Google Scholar] [CrossRef]
- Sanna, A.; Vispute, T.P.; Huber, G.W. Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl. Catal. B Environ. 2015, 165, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Stummann, M.Z.; Høj, M.; Hansen, A.B.; Wiwel, P.; Davidsen, B.; Jensen, P.A.; Jensen, A.D. Hydrogen assisted catalytic biomass pyrolysis for green fuels. In Proceedings of the Effect of Catalyst in the Fluid Bed. Abstract from The 10th International Conference on Environmental Catalysis, The 3rd International Symposium on Catalytic Science and Technology in Sustainable Energy and Environment, Tianjin, China, 24–27 September 2018. [Google Scholar]
- IH2® Technology, Shell. Available online: https://www.shell.com/business-customers/catalysts-technologies/licensed-technologies/benefits-of-biofuels/ih2-technology.html (accessed on 21 January 2021).
- Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 2019, 24, 2250. [Google Scholar] [CrossRef] [Green Version]
- Jeon, M.-J.; Jeon, J.-K.; Suh, D.S.; Park, S.H.; Sa, J.Y.; Joo, S.H.; Park, Y.-K. Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal. Today 2013, 204, 170–178. [Google Scholar] [CrossRef]
- Behrens, M.; Cross, J.S.; Akasaka, H.; Ohtake, N. A study of guaiacol, cellulose and Hinoki wood pyrolysis with silica, ZrO2 & TiO2 and ZSM-5 catalysts. J. Anal. Appl. Pyrolysis 2017, 125, 178–184. [Google Scholar]
- Grams, J.; Niewiadomski, M.; Ruppert, A.M.; Kwapinski, W. Catalytic performance of a Ni Catalyst Supported on CeO2, ZrO2 and CeO2-ZrO2 in the upgrading of cellulose fast pyrolysis vapours. Competes Rendus Chim. 2015, 18, 1223–1228. [Google Scholar] [CrossRef]
- Kumar, A.; Biswas, B.; Bhaskar, T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bior. Technol. 2020, 299, 122589. [Google Scholar] [CrossRef]
- Maki-Arvela, P.; Murzin, D.Y. Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications. Catalysts 2017, 7, 265. [Google Scholar] [CrossRef] [Green Version]
- Memon, M.Z.; Ji, G.; Li, J.; Zhao, M. Na2ZrO3 as an Effective Bifunctional Catalyst-Sorbent during Cellulose Pyrolysis. I&EC Res. 2017, 56, 3223–3230. [Google Scholar]
- Hendry, A.; Åhlén, M.; Fernandes, T.; Cheung, O.; Sanna, A. Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy phenols recovery. Bioresour. Technol. 2020, 317, 124008. [Google Scholar] [CrossRef]
- Wan, S.; Wang, Y. A review on ex situ catalytic fast pyrolysis of biomass. Front. Chem. Sci. Eng. 2014, 8, 280–294. [Google Scholar] [CrossRef]
- Nowakowski, D.J.; Bridgwater, A.V.; Elliott, D.C.; Meier, D.; de Wild, P. Lignin fast pyrolysis: Result from an international collaboration. J. Anal. Appl. Pyrolysis 2009, 88, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhang, Y.; Tang, Z.; Li, W.-Z.; Zhu, X.-F. Catalytic upgrading of biomass fast pyrolysis vapors with titania and zirconia/titania based catalysts. Fuel 2010, 89, 2096–2103. [Google Scholar] [CrossRef]
- Mante, O.D.; Rodriguez, J.A.; Senanayake, S.D.; Babu, S.P. Catalytic conversion of biomass pyrolysis vapors into hydrocarbon fuel precursors. Green Chem. 2015, 17, 2362. [Google Scholar] [CrossRef]
- Merck kGaA. IR Spectrum Table & Chart. 2020. Available online: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html (accessed on 15 March 2020).
- Zhang, H.; Shao, S.; Xiao, R.; Shen, D.; Zeng, J. Characterization of Coke Deposition in the Catalytic Fast Pyrolysis of Biomass Derivates. Energy Fuels 2014, 28, 52–57. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Munro, S.; Åhlén, M.; Cheung, O.; Sanna, A. Tuning Na2ZrO3 for fast and stable CO2 adsorption by solid state synthesis. Chem. Eng. J. 2020, 388, 124284. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni–Cu bimetallic catalysts. Green Chem. 2013, 15, 1932. [Google Scholar] [CrossRef]
- Ardiyanti, A.R.; Khromova, S.A.; Venderbosch, R.H.; Yakovlev, V.A.; Milian-Cabrera, I.V.; Heeres, H.J. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports. Appl. Catal. A Gen. 2012, 449, 121–130. [Google Scholar] [CrossRef]
wt% | ||||||
---|---|---|---|---|---|---|
Catalyst | Material | Conversion | Oil | Char | Gases | Source |
Cat_A | Etek Lignin | 71 | 36 | 29 | 35 | |
Cat_B | Etek Lignin | 73 | 33 | 27 | 40 | |
Cat_C | Etek Lignin | 72 | 46 | 28 | 26 | |
Cat_D | Etek Lignin | 73 | 30 | 27 | 43 | |
None | Etek Lignin | 73 * | 58 | 27 | 10 | [20] |
Na:Zr (1.5:1) | Etek Lignin | 72 | 41 | 28 | 31 | [18] |
Aarea% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Catalyst | Ph | HC | Alde | Ket | Acids | DS | AR | PAHs | OH | CPO | Others |
Cat_A | 55.5 | 8.4 | 3.8 | 7.2 | 2.0 | 2.1 | 3.9 | 2.9 | 6.7 | 5.6 | 1.9 |
Cat_B | 67.7 | 3.8 | 1.1 | 4.2 | 2.6 | 1.3 | 2.3 | 6.7 | 4.1 | 5.9 | 0.2 |
Cat_C | 41.2 | 6.3 | 7.4 | 11.8 | 1.2 | 5.2 | 2.0 | 4.2 | 4.6 | 15.9 | 0.3 |
Cat_D | 52.9 | 5.3 | 3.9 | 4.8 | 5.3 | 1.4 | 6.3 | 5.2 | 3.2 | 9.5 | 2.2 |
None [20] | 48.3 | 0.0 | 14.3 | 12.0 | 3.0 | 15.0 | 3.5 | 0.0 | 4.0 | 0.0 | 0.0 |
Area% | ||||||||
---|---|---|---|---|---|---|---|---|
Catalyst | Pyrolysis Material | Phenol | Guaiacols | Methyl Phenols | Catechols | Alkyl Phenols | Others | Source |
Cat_A | Etek lignin | 4.6 | 58.9 | 23.5 | 6.5 | 4.6 | 1.9 | |
Cat_B | Etek lignin | 4.6 | 64.8 | 18.5 | 2.5 | 4.2 | 5.4 | |
Cat_C | Etek lignin | 3.2 | 59.3 | 15.9 | 11.7 | 8.3 | 1.6 | |
Cat_D | Etek lignin | 4.0 | 67.3 | 18.2 | 4.4 | 5.2 | 0.9 | |
None | Etek lignin | 1.1 | 89.0 | 6.5 | 3.3 | 0.1 | 0.0 | [20] |
wt%, Dry Basis | wt%, Dry Basis | wt%, Dry Basis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Catalytic Mixture | Raw Catalytic Mixture Data | Spent (Coked) Catalytic Mixture Data | Change in Coked Catalytic Mixture | ||||||||
C | H | N | O | C | H | N | O | C | H | N * | |
Cat_A | 1.68 | 0.46 | - | 97.86 | 5.60 | 0.18 | 0.01 | 94.21 | 3.92 | −0.28 | 0.01 |
Cat_B | 2.59 | 0.63 | - | 96.78 | 6.87 | 0.31 | 0.05 | 92.77 | 4.28 | −0.32 | 0.05 |
Cat_C | 0.49 | 0.07 | - | 99.44 | 9.08 | 0.24 | 0.05 | 90.63 | 8.59 | 0.17 | 0.05 |
Cat_D | 1.80 | 0.37 | - | 97.83 | 10.12 | 0.44 | 0.02 | 89.42 | 8.32 | 0.07 | 0.02 |
Catalytic Mixtures | Molar Ratio of Compound | Predicted Mass Fraction of Calcined Mixtures Components, wt% | |||||
---|---|---|---|---|---|---|---|
Na2O | CeO2 | ZrO2 | Na2O | CeO2 | ZrO2 | Total | |
Cat_A | 1 | 1 | 1 | 17.4 | 48.2 | 34.5 | 100.0 |
Cat_B | 2 | 1 | 1 | 29.6 | 41.0 | 29.4 | 100.0 |
Cat_C | 1 | 2 | 1 | 11.7 | 65.0 | 23.3 | 100.0 |
Cat_D | 1 | 1 | 2 | 12.9 | 35.8 | 51.3 | 100.0 |
Parameter | Calcination | Pyrolysis |
---|---|---|
Hold-Temperature [°C] | 900 | 600 |
Ramp Rate [°C] | 5 | 100 |
Hold-Time | 2 h | 15 min |
N2 Flowrate [mL/min] | - | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeardley, A.; Bagnato, G.; Sanna, A. Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis. Molecules 2021, 26, 827. https://doi.org/10.3390/molecules26040827
Yeardley A, Bagnato G, Sanna A. Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis. Molecules. 2021; 26(4):827. https://doi.org/10.3390/molecules26040827
Chicago/Turabian StyleYeardley, Adam, Giuseppe Bagnato, and Aimaro Sanna. 2021. "Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis" Molecules 26, no. 4: 827. https://doi.org/10.3390/molecules26040827
APA StyleYeardley, A., Bagnato, G., & Sanna, A. (2021). Effect of Ceria Addition to Na2O-ZrO2 Catalytic Mixtures on Lignin Waste Ex-Situ Pyrolysis. Molecules, 26(4), 827. https://doi.org/10.3390/molecules26040827