Release Kinetics Studies of Early-Stage Volatile Secondary Oxidation Products of Rapeseed Oil Emitted during the Deep-Frying Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. VOCs Emissions during Deep-Frying
2.2. The Role of Food in the Release Kinetics of SOPs
2.3. Effect of Temperature on the SOPs Emission
3. Materials and Methods
3.1. Experimental Setup
3.2. Materials
3.3. PTR-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, J.; Jeong, S.; Oh, I.K.; Lee, S. Evaluation of soybean oil-carnauba wax oleogels as an alternative to high saturated fat frying media for instant fried noodles. LWT Food Sci. Technol. 2017, 84, 788–794. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kita, A.; Lisińska, G.; Gołubowska, G. The effects of oils and frying temperatures on the texture and fat content of potato crisps. Food Chem. 2007, 102, 1–5. [Google Scholar] [CrossRef]
- Makhoul, S.; Yener, S.; Khomenko, I.; Capozzi, V.; Cappellin, L.; Aprea, E.; Scampicchio, M.; Gasperi, F.; Biasioli, F. Rapid non-invasive quality control of semi-finished products for the food industry by direct injection mass spectrometry headspace analysis: The case of milk powder, whey powder and anhydrous milk fat. J. Mass Spectrom. 2016, 51, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Dobarganes, C.; Márquez-Ruiz, G.; Velasco, J. Interactions between fat and food during deep-frying. Eur. J. Lipid Sci. Technol. 2000, 102, 521–528. [Google Scholar] [CrossRef]
- Martínez-Yusta, A.; Goicoechea, E.; Guillén, M.D. Aldehydes after Prolonged Heating at Frying Temperature; Academic Press: Cambridge, MA, USA, 2015; pp. 251–258. [Google Scholar] [CrossRef]
- Bordin, K.; Kunitake, M.T.; Aracava, K.K.; Trindade, C.S.F. Changes in food caused by deep fat frying—A review. Arch. Latinoam. Nutr. 2013, 63, 5–13. [Google Scholar] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Głowacz-Różyńska, A.; Wasik, A. On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control 2021, 121, 107659. [Google Scholar] [CrossRef]
- Frankel, E.N. Volatile lipid oxidation products. Prog. Lipid Res. 1983, 22, 1–33. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Li, M.; Shen, Q.; Saleh, A.S.M. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 601–633. [Google Scholar] [CrossRef] [Green Version]
- Katragadda, H.R.; Fullana, A.; Sidhu, S.; Carbonell-Barrachina, Á.A. Emissions of volatile aldehydes from heated cooking oils. Food Chem. 2010, 120, 59–65. [Google Scholar] [CrossRef]
- Kim, S.M.; Chung, M.W.; Kobayashi, A.; Kubota, K.; Okumura, J. Volatile Compounds in Stir-Fried Garlic. J. Agric. Food Chem. 1995, 43, 2951–2955. [Google Scholar] [CrossRef]
- Osawa, C.C.; Gonçalves, L.A.G.; Da Silva, M.A.A.P. Odor significance of the volatiles formed during deep-frying with palm Olein. JAOCS J. Am. Oil Chem. Soc. 2013, 90, 183–189. [Google Scholar] [CrossRef]
- Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level. Int. J. Mass Spectrom. Ion Process. 1995, 149–150, 609–619. [Google Scholar] [CrossRef]
- Cappellin, L.; Loreto, F.; Aprea, E.; Romano, A.; Sánchez del Pulgar, J.; Gasperi, F.; Biasioli, F. PTR-MS in Italy: A multipurpose sensor with applications in environmental, agri-food and health science. Sensors (Switzerland) 2013, 13, 11923–11955. [Google Scholar] [CrossRef] [Green Version]
- Cappellin, L.; Soukoulis, C.; Aprea, E.; Granitto, P.; Dallabetta, N.; Costa, F.; Viola, R.; Märk, T.D.; Gasperi, F.; Biasioli, F. PTR-ToF-MS and data mining methods: A new tool for fruit metabolomics. Metabolomics 2012, 8, 761–770. [Google Scholar] [CrossRef]
- Biasioli, F.; Gasperi, F.; Yeretzian, C.; Märk, T.D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC Trends Anal. Chem. 2011, 30, 968–977. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Koot, A.; Akkermans, A.W.; Araghipour, A.N.; Rozijn, A.M.; Baltussen, A.M.; Wisthaler, A.A.; Märk, A.T.D.; Frankhuizen, A.R. Butter and butter oil classification by PTR-MS. Eur. Food Res. Technol. 2007, 227, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Esposto, S.; Aprea, E.; Servili, M.; Montedoro, G.F.; Van Ruth, S.M. Characterisation of Italian virgin olive oils by PTR-MS. In Proceedings of the 2nd International Conference on Proton Transfer Reaction Mass Spectrometry and Its Applications, Obergurgl, Austria, 26 January–2 February 2005; p. 112. [Google Scholar]
- Araghipour, N.; Colineau, J.; Koot, A.; Akkermans, W.; Rojas, J.M.M.; Beauchamp, J.; Wisthaler, A.; Märk, T.D.; Downey, G.; Guillou, C.; et al. Geographical origin classification of olive oils by PTR-MS. Food Chem. 2008, 108, 374–383. [Google Scholar] [CrossRef]
- Aprea, E.; Biasioli, F.; Sani, G.; Cantini, C.; Märk, T.D.; Gasperi, F. Proton transfer reaction-mass spectrometry (PTR-MS) headspace analysis for rapid detection of oxidative alteration of olive oil. J. Agric. Food Chem. 2006, 54, 7635–7640. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Complementary Use of Multi-dimensional Gas Chromatography and Proton Transfer Reaction Mass Spectrometry for Identification of Rapeseed Oil Quality Indicators. Food Anal. Methods 2018, 11, 3417–3424. [Google Scholar] [CrossRef] [Green Version]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. A new method for real-time monitoring of volatiles in frying fumes using proton transfer reaction mass spectrometry with time-of-flight analyser. Mon. Chem. 2018, 149, 1549–1554. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Lin, D.; Shen, Q.; Saleh, A.S.M. The changes in the volatile aldehydes formed during the deep-fat frying process. J. Food Sci. Technol. 2015, 52, 7683–7696. [Google Scholar] [CrossRef] [Green Version]
- Mateus, M.L.; Lindinger, C.; Gumy, J.C.; Liardon, R. Release kinetics of volatile organic compounds from roasted and ground coffee: Online measurements by PTR-MS and mathematical modeling. J. Agric. Food Chem. 2007, 55, 10117–10128. [Google Scholar] [CrossRef]
- Trefz, P.; Schubert, J.K.; Miekisch, W. Effects of humidity, CO2 and O2 on real-time quantitation of breath biomarkers by means of PTR-ToF-MS. J. Breath Res. 2018, 12, 26016. [Google Scholar] [CrossRef] [PubMed]
- Steinbacher, M.; Dommen, J.; Ammann, C.; Spirig, C.; Neftel, A.; Prevot, A.S.H. Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements. Int. J. Mass Spectrom. 2004, 239, 117–128. [Google Scholar] [CrossRef]
- Fullana, A.; Carbonell-Barrachina, Á.A.; Sidhu, S. Volatile aldehyde emissions from heated cooking oils. J. Sci. Food Agric. 2004, 84, 2015–2021. [Google Scholar] [CrossRef]
Peak Signature | Molecular Formula | m/z | Tentatively Identified Compound | Normalized Peak Intensity [ncps] a | ||
---|---|---|---|---|---|---|
1 min | 5 min | 10 min | ||||
m57 | C3H4OH+ | 57.03 | Acrolein | 3.14 ± 0.22 × 104 | 2.51 ± 0.14 × 104 | 3.33 ± 0.13 × 104 |
m87 | C5H10OH+ | 87.08 | Pentanal | 5.31 ± 0.60 × 103 | 4.56 ± 0.44 × 103 | 4.67 ± 0.47 × 103 |
m99 | C6H10OH+ | 99.08 | 2-Hexenal | 3.76 ± 0.46 × 103 | 3.52 ± 0.44 × 103 | 4.10 ± 0.45 × 103 |
m101 | C6H12OH+ | 101.10 | Hexanal | 2.39 ± 0.37 × 103 | 2.45 ± 0.17 × 103 | 2.50 ± 0.26 × 103 |
m143 | C9H18OH+ | 143.14 | 2-Nonenal | 2.62 ± 0.48 × 103 | 4.44 ± 0.57 × 103 | 5.10 ± 0.53 × 103 |
m155 | C10H18OH+ | 155.14 | 2-Decenal | 0.51 ± 0.11 × 103 | 1.12 ± 0.13 × 103 | 1.23 ± 0.18 × 103 |
Parameter | ncpscum= a (time)2 + b(time) + c | ||
---|---|---|---|
140 °C | 160 °C | 180 °C | |
TVOC | |||
a [×10−7] | −2.39 | 4.96 | 6.07 |
b [×10−3] | 1.69 | 1.25 | 1.18 |
c [×10−2] | 8.24 | 5.96 | 6.24 |
m57 | |||
a [×10−7] | −8.76 | 0.10a | 7.97 a |
b [×10−3] | 2.00 | 0.95a | 1.08 a |
c [×10−2] | 0.12 | 4.10a | 6.67 a |
m87 | |||
a [×10−7] | −5.81 | 1.49 | 4.04 c |
b [×10−3] | 1.82 | 1.42 | 1.22 c |
c [×10−2] | 0.12 | 7.92 | 8.61 c |
m99 | |||
a [×10−7] | −7.01 | 3.31 | 6.70 b |
b [×10−3] | 1.90 | 1.31 | 1.10 b |
c [×10−2] | 0.11 | 7.74 | 6.72 b |
m101 | |||
a [×10−7] | −7.00 | −2.53 | 1.02 d |
b [×10−3] | 1.89 | 1.65 | 1.36 d |
c [×10−2] | 0.12 | 9.24 | 10.8 d |
m143 | |||
a [×10−7] | −2.44 | 7.18 | 13.0 |
b [×10−3] | 1.66 | 1.13 | 0.79 |
c [×10−2] | 0.10 | 6.20 | 4.51 |
m155 | |||
a [×10−7] | −4.89 | −0.01 | 6.97 a |
b [×10−3] | 1.78 | 1.51 | 1.06 a |
c [×10−2] | 0.11 | 8.97 | 8.55 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzak, T.; Wasik, A. Release Kinetics Studies of Early-Stage Volatile Secondary Oxidation Products of Rapeseed Oil Emitted during the Deep-Frying Process. Molecules 2021, 26, 1006. https://doi.org/10.3390/molecules26041006
Majchrzak T, Wasik A. Release Kinetics Studies of Early-Stage Volatile Secondary Oxidation Products of Rapeseed Oil Emitted during the Deep-Frying Process. Molecules. 2021; 26(4):1006. https://doi.org/10.3390/molecules26041006
Chicago/Turabian StyleMajchrzak, Tomasz, and Andrzej Wasik. 2021. "Release Kinetics Studies of Early-Stage Volatile Secondary Oxidation Products of Rapeseed Oil Emitted during the Deep-Frying Process" Molecules 26, no. 4: 1006. https://doi.org/10.3390/molecules26041006
APA StyleMajchrzak, T., & Wasik, A. (2021). Release Kinetics Studies of Early-Stage Volatile Secondary Oxidation Products of Rapeseed Oil Emitted during the Deep-Frying Process. Molecules, 26(4), 1006. https://doi.org/10.3390/molecules26041006