Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase
Abstract
:1. Introduction
2. Results
2.1. Structural and Dynamical Properties of YqhD Enzyme
2.1.1. YqhD Dimer
2.1.2. YqhD Domain
2.1.3. YqhD Monomer
2.2. Hydrogen Bonding in YqhD Enzyme
2.2.1. Inter-Monomer Hydrogen Bonding
2.2.2. Interdomain Hydrogen Bonding
2.3. Cluster Analysis of YqhD Enzyme
2.4. Interdomain Cleft
2.4.1. Interdomain Opening-Closing Cleft Dynamics
2.4.2. Cofactor Binding and Release in YqhD Enzyme
3. Discussion and Conclusions
4. Materials and Methods
4.1. Starting Coordinates
4.2. Modeling of NADP/H Cofactor
4.3. Molecular Dynamics Simulations
4.4. Cluster Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Emptage, M.; Haynie, S.L.; Laffend, L.A.; Pucci, J.P.; Whited, G. Process for the Biological Production of 1,3-Propanediol with High Titer. U.S. Patent 6,514,733B1, 4 February 2003. [Google Scholar]
- Jarboe, L.R. YqhD: A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl. Environ. Microbiol. 2011, 89, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atsumi, S.; Wu, T.Y.; Eckl, E.M.; Hawkins, S.D.; Buelter, T.; Liao, J.C. Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl. Microbiol. Biotechnol. 2010, 85, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaidyanathan, H.; Kandasamy, V.; Gopal Ramakrishnan, G.; Ramachandran, K.; Jayaraman, G.; Ramalingam, S. Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri. AMB Express 2011, 1, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abergel, C.; Coutard, B.; Byrne, D.; Chenivesse, S.; Claude, J.B.; Deregnaucourt, C.; Fricaux, T.; Gianesini-Boutreux, C.; Jeudy, S.; Lebrun, R.; et al. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets. J. Struct. Funct. Genomics 2003, 4, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Montella, C.; Bellsolell, L.; Perez-Luque, R.; Badia, J.; Baldoma, L.; Coll, M.; Aguilar, J. Crystal structure of an iron-dependent group III dehydrogenase that interconverts l-lactaldehyde and l-1,2-propanediol in Escherichia coli. J. Bacteriol. 2005, 187, 4957–4966. [Google Scholar] [CrossRef] [Green Version]
- Sulzenbacher, G.; Alvarez, K.; Van Den Heuvel, R.H.; Versluis, C.; Spinelli, S.; Campanacci, V.; Valencia, C.; Cambillau, C.; Eklund, H.; Tegoni, M. Crystal structure of E.coli alcohol dehydrogenase YqhD: Evidence of a covalently modified NADP coenzyme. J. Mol. Biol. 2004, 342, 489–502. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.J.; Liu, D.H. Decrease the accumulation of 3-hydroxypropionaldehyde for 1,3-propanediol production by expressing the Yqhd gene in Klebsiella pneumonia. J. Biotechnol. 2008, 136, S354. [Google Scholar] [CrossRef]
- Perez, J.M.; Arenas, F.A.; Pradenas, G.A.; Sandoval, J.M.; Vasquez, C.C. Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J. Biol. Chem. 2008, 283, 7346–7353. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.C.; Miller, E.N.; Jarboe, L.R.; Baggett, C.L.; Shanmugam, K.T.; Ingram, L.O. YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. J. Ind. Microbiol. Biotechnol. 2011, 38, 431–439. [Google Scholar] [CrossRef]
- Miller, E.N.; Jarboe, L.R.; Yomano, L.P.; York, S.W.; Shanmugam, K.T.; Ingram, L.O. Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 4315–4323. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yomano, L.P.; Lee, J.Y.; York, S.W.; Zheng, H.B.; Mullinnix, M.T.; Shanmugam, K.T.; Ingram, L.O. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc. Natl. Acad. Sci. USA 2013, 110, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koma, D.; Yamanaka, H.; Moriyoshi, K.; Ohmoto, T.; Sakai, K. Production of Aromatic Compounds by Metabolically Engineered Escherichia coli with an Expanded Shikimate Pathway. Appl. Environ. Microbiol. 2012, 78, 6203–6216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwayanagi, T.; Miyamoto, S.; Konno, T.; Mizutani, H.; Hirai, T.; Shigemoto, Y.; Gojobori, T.; Sugawara, H. TP Atlas: Integration and dissemination of advances in Targeted Proteins Research Program (TPRP)—Structural biology project phase II in Japan. J. Struct. Funct. Genomics 2012, 13, 145–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voelker, F.; Dumon-Seignovert, L.; Soucaille, P. Mutant Yqhd Enzyme for the Production of a Biochemical by Fermentation. U.S. Patent 8,969,053B2, 3 March 2015. [Google Scholar]
- Zhu, H.L.; Yi, X.Y.; Liu, Y.; Hu, H.B.; Wood, T.K.; Zhang, X.H. Production of acetol from glycerol using engineered Escherichia coli. Bioresour. Technol. 2013, 149, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Clomburg, J.M.; Gonzalez, R. Metabolic Engineering of Escherichia coli for the Production of 1,2-Propanediol From Glycerol. Biotechnol. Bioeng. 2011, 108, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Lan, E.I.; Liao, J.C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc. Natl. Acad. Sci. USA 2012, 109, 6018–6023. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chen, J.; Li, Y. Enhanced activity of yqhD oxidoreductase in synthesis of 1,3-propanediol by error-prone PCR. Pro. Nat. Sci. 2008, 18, 1519–1524. [Google Scholar] [CrossRef]
- Rao, Z.; Ma, Z.; Shen, W.; Fang, H.; Zhuge, J.; Wang, X. Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from d-glucose. J. Appl. Microbiol. 2008, 105, 1768–1776. [Google Scholar] [CrossRef]
- Tang, X.M.; Tan, Y.S.; Zhu, H.; Zhao, K.; Shen, W. Microbial Conversion of Glycerol to 1,3-Propanediol by an Engineered Strain of Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 1628–1634. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.H.; Qu, H.J.; Zhang, D.W.; Tian, P.F.; Tan, T.W. Production of 1,3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system. Mol. Biotechnol. 2007, 37, 112–119. [Google Scholar] [CrossRef]
- Elleuche, S.; Fodor, K.; von der Heyde, A.; Klippel, B.; Wilmanns, M.; Antranikian, G. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: Insights into enzymatic activity and organization of the metal ion-containing region. Appl. Environ. Microbiol. 2014, 98, 4041–4051. [Google Scholar] [CrossRef] [PubMed]
- Elleuche, S.; Klippel, B.; von der Heyde, A.; Antranikian, G. Comparative analysis of two members of the metal ion-containing group III-alcohol dehydrogenases from Dickeya zeae. Biotechnol. Lett. 2013, 35, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Schwaneberg, U.; Roccatano, D. Conformational Dynamics of the FMN-Binding Reductase Domain of Monooxygenase P450BM-3. J. Chem. Theory Comput. 2013, 9, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Sellés Vidal, L.; Kelly, C.L.; Mordaka, P.M.; Heap, J.T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochimica Biophys. Acta (BBA) 2018, 1866, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-G.; Li, S.; Ji, X.-J.; Huang, H.; Hu, N. Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J. Microbiol. Biotechnol. 2009, 25, 1217. [Google Scholar] [CrossRef]
- Verma, R.; Mitchell-Koch, K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017, 7, 212. [Google Scholar] [CrossRef] [Green Version]
- Cummins, P.L.; Ramnarayan, K.; Singh, U.C.; Gready, J.E. Molecular dynamics/free energy perturbation study on the relative affinities of the binding of reduced and oxidized NADP to dihydrofolate reductase. J. Am. Chem. Soc. 1991, 113, 8247–8256. [Google Scholar] [CrossRef]
- Blikstad, C.; Dahlstrom, K.M.; Salminen, T.A.; Widersten, M. Substrate scope and selectivity in offspring to an enzyme subjected to directed evolution. FEBS J. 2014, 281, 2387–2398. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Bruice, T.C. Dynamic Structures of Horse Liver Alcohol Dehydrogenase (HLADH): Results of Molecular Dynamics Simulations of HLADH-NAD+-PhCH2OH, HLADH-NAD+-PhCH2O−, and HLADH-NADH-PhCHO. J. Am. Chem. Soc. 2001, 123, 11952–11959. [Google Scholar] [CrossRef]
- Oyen, D.; Fenwick, R.B.; Stanfield, R.L.; Dyson, H.J.; Wright, P.E. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. J. Am. Chem. Soc. 2015, 137, 9459–9468. [Google Scholar] [CrossRef] [Green Version]
- The PyMOL Molecular Graphics System, Version 1.8; Schrodinger LLC.: New York, NY, USA, 2015.
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Miyamoto, S.; Kollman, P.A. Settle - an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J. Comput. Chem. 1992, 13, 952–962. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; Vangunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W.F.; Mark, A.E. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
Enzyme | Cofactor | Atoms | Water Molecules | Counter Ions | No. of Simulations | Time (ns) |
---|---|---|---|---|---|---|
YqhD Dimer | NADP | 128,728 | 40,363 | 14 Na+ | 5 | 200 |
YqhD Dimer | NADPH | 128,723 | 40,360 | 16 Na+ | 5 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, R.; Ellis, J.M.; Mitchell-Koch, K.R. Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules 2021, 26, 270. https://doi.org/10.3390/molecules26020270
Verma R, Ellis JM, Mitchell-Koch KR. Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules. 2021; 26(2):270. https://doi.org/10.3390/molecules26020270
Chicago/Turabian StyleVerma, Rajni, Jonathan M. Ellis, and Katie R. Mitchell-Koch. 2021. "Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase" Molecules 26, no. 2: 270. https://doi.org/10.3390/molecules26020270
APA StyleVerma, R., Ellis, J. M., & Mitchell-Koch, K. R. (2021). Dynamic Preference for NADP/H Cofactor Binding/Release in E. coli YqhD Oxidoreductase. Molecules, 26(2), 270. https://doi.org/10.3390/molecules26020270