Photomechanical Polymer Nanocomposites for Drug Delivery Devices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanocomposites and DDDs
2.2. Physical and Chemical Features of the Nanocomposites
2.3. Optimization of the Irradiation Optical Powers
2.4. Thermal Fluorescence Imaging Characterization by LIFT
2.5. Volumetric Deformation and Stress Caused by NIR Irradiation
2.6. Drug Delivery Evaluation of PDMS/CNPs 1%
Numerical Simulation of the Drug Delivery Device
3. Materials and Methods
3.1. Materials and Nanocomposites Fabrication
3.2. Membranes, Cylinders, and Capsule Fabrication
3.3. Physicochemical Characterization
3.4. Performance of the Drug Delivery Device
3.4.1. Determination of Critical Parameters before Thermal Damage of the Nanocomposites
3.4.2. Laser-Induced Fluorescence Thermometry (LIFT)
3.4.3. Evaluation of the Volumetric Deformation and the Stress Caused by Laser Infrared Irradiation
3.4.4. Drug Delivery Capacity of the Device Triggered by Photomechanical Effects
3.4.5. Numerical Simulation of the Drug Delivery Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DDDs | Drug Delivery Devices |
DDS | Drug Delivery Systems |
CNPs | Carbon Nanoparticles |
PDMS | Polydimethylsiloxane |
NIR | Near Infrared |
ODF | Optically Driven Force |
References
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Sig. Transduct. Target. Ther. 2019, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slaughter, R.L. Biopharmaceutics and clinical pharmacokinetics. Fourth Edition. By Milo Gibaldi. Lea and Febiger: Malvem, PA, 1991. 406 pp. J. Pharm. Sci. 1992, 81, 966. [Google Scholar] [CrossRef]
- Langer, R.; Peppas, N. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981, 2, 201–214. [Google Scholar] [CrossRef]
- Lee, S.H.; Piao, H.; Cho, Y.C.; Kim, S.N.; Choi, G.; Kim, C.R.; Ji, H.B.; Park, C.G.; Lee, C.; Shin, C.I.; et al. Implantable multireservoir device with stimulus-responsive membrane for on-demand and pulsatile delivery of growth hormone. Proc. Natl. Acad. Sci. USA 2019, 116, 11664–11672. [Google Scholar] [CrossRef] [Green Version]
- Jain, K.K. Drug Delivery Systems—An Overview. In Drug Delivery Systems. Methods in Molecular Biology; 999 Riverview Drive, Suite 208; Jain, K.K., Ed.; Humana Press: Totowa, NJ, USA, 2008; Volume 437, Chapter 1; pp. 1–50. [Google Scholar]
- Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics 2016, 6, 1306. [Google Scholar] [CrossRef]
- Yi, Y.; Buttner, U.; Foulds, I.G. A cyclically actuated electrolytic drug delivery device. Lab Chip 2015, 15, 3540–3548. [Google Scholar] [CrossRef]
- Yi, Y.; Buttner, U.; Carreno, A.A.A.; Conchouso, D.; Foulds, I.G. A pulsed mode electrolytic drug delivery device. J. Micromech. Microeng. 2015, 25, 105011. [Google Scholar] [CrossRef]
- Yi, Y.; Chiao, M.; Wang, B. An electrochemically actuated drug delivery device with in-situ dosage sensing. Smart Mater. Struct. 2021, 30, 055003. [Google Scholar] [CrossRef]
- Merino, S.; Martín, C.; Kostarelos, K.; Prato, M.; Vázquez, E. Nanocomposite Hydrogels: 3D Polymer Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano 2015, 9, 4686–4697. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jackson, J.K.; Chiao, M. Microfabricated Drug Delivery Devices: Design, Fabrication, and Applications. Adv. Funct. Mater. 2017, 27, 1703606. [Google Scholar] [CrossRef]
- Priya James, H.; John, R.; Alex, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharm. Sin. B. 2014, 4, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, J.; Chen, A.; Zhang, H.; Burt, H.; Chiao, M. Design and Near-Infrared Actuation of a Gold Nanorod Polymer Microelectromechanical Device for On-Demand Drug Delivery. Micromachines 2018, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Poma, A. Advances in Molecularly Imprinted Polymers as Drug Delivery Systems. Molecules 2021, 26, 3589. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.C.; Zhang, Y.; Abebe, F. Recent Applications of Dual-Stimuli Responsive Chitosan Hydrogel Nanocomposites as Drug Delivery Tools. Molecules 2021, 26, 4735. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Yi, Y.; Kosel, J. A remotely operated drug delivery system with dose control. Sens. Actuators A 2017, 261, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Huang, R.; Li, C. Flexible substrate-based thermo-responsive valve applied in electromagnetically powered drug delivery system. J. Mater. Sci. 2019, 54, 3392–3402. [Google Scholar] [CrossRef]
- Martinez-Cuezva, A.; Valero-Moya, S.; Alajarin, M.; Berna, J. Light-responsive peptide [2]rotaxanes as gatekeepers of mechanised nanocontainers. Chem. Commun. 2015, 51, 14501–14504. [Google Scholar] [CrossRef] [Green Version]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.L.; Zink, J.I.; Stoddart, J.F. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Acc. Chem. Res 2011, 44, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Sershen, S.; West, J. Implantable, polymeric systems for modulated drug delivery. Adv. Drug Deliv. Rev. 2002, 54, 1225–1235. [Google Scholar] [CrossRef]
- Pirmoradi, F.N.; Jackson, J.K.; Burt, H.M.; Chiao, M. A magnetically controlled MEMS device for drug delivery: Design, fabrication, and testing. Lab Chip 2011, 11, 3072–3080. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, Y.B.; Kim, B.H.; Lee, C.; Cho, Y.M.; Kim, S.N.; Park, C.G.; Cho, Y.C.; Choy, Y.B. Implantable batteryless device for on-demand and pulsatile insulin administration. Nat. Commun. 2017, 8, 15032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Peng, X.; Zhou, X.; Zou, J.; Cheng, L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020, 25, 516. [Google Scholar] [CrossRef] [Green Version]
- Mata, A.; Fleischman, A.J.; Roy, S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices 2005, 7, 281–293. [Google Scholar] [CrossRef]
- Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers 2012, 4, 1349–1398. [Google Scholar] [CrossRef]
- Baek, D.H.; Jung, H.; Kim, J.H.; Park, Y.W.; Kim, D.W.; Kim, H.S.; Ahn, S.; Kim, Y.J. Effect of Viscosity on the Formation of Porous Polydimethylsiloxane for Wearable Device Applications. Molecules 2021, 26, 1471. [Google Scholar] [CrossRef]
- Nour, M.; Berean, K.; Chrimes, A.; Zoolfakar, A.S.; Latham, K.; McSweeney, C.; Field, M.R.; Sriram, S.; Kalantar-zadeh, K.; Ou, J.Z. Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. J. Membr. Sci 2014, 470, 346–355. [Google Scholar] [CrossRef]
- Lamberti, A. Microfluidic photocatalytic device exploiting PDMS/TiO2 nanocomposite. Appl. Surf. Sci. 2015, 335, 50–54. [Google Scholar] [CrossRef]
- Pimentel-Dominguez, R.; Velazquez-Benitez, A.; Velez-Cordero, J.; Hautefeuille, M.; Sanchez-Arevalo, F.; Hernandez-Cordero, J. Photothermal Effects and Applications of Polydimethylsiloxane Membranes with Carbon Nanoparticles. Polymers 2016, 8, 84. [Google Scholar] [CrossRef]
- Shademani, A.; Zhang, H.; Jackson, J.K.; Chiao, M. Active Regulation of On-Demand Drug Delivery by Magnetically Triggerable Microspouters. Adv. Funct. Mater. 2017, 27, 1604558. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15, 1903060. [Google Scholar] [CrossRef]
- Duff, J.D.; Williams, S.J.; Panchapakesan, B. Microfluidic pumping with optically induced actuation of a carbon nanotube membrane. In Proceedings of the 8th International Conference on Nanochannels, Microchannels and Minichannels, PTS A and B, Montreal, QC, Canada, 1–5 August 2010; pp. 1141–1144. [Google Scholar]
- Virumbrales-Muñoz, M.; Livingston, M.K.; Farooqui, M.; Skala, M.C.; Beebe, D.J.; Ayuso, J.M. Development of a Microfluidic Array to Study Drug Response in Breast Cancer. Molecules 2019, 24, 4385. [Google Scholar] [CrossRef] [Green Version]
- van Poll, M.L.; Khodabakhsh, S.; Brewer, P.J.; Shard, A.G.; Ramstedt, M.; Huck, W.T.S. Surface modification of PDMS via self-organization of vinyl-terminated small molecules. Soft Matter 2009, 5, 2286–2293. [Google Scholar] [CrossRef]
- Garnica-Palafox, I.M.; Sánchez-Arévalo, F.M. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr. Polym. 2016, 151, 1073–1081. [Google Scholar] [CrossRef]
- Garnica-Palafox, I.; Estrella-Monroy, H.; Vázquez-Torres, N.; Álvarez Camacho, M.; Castell-Rodríguez, A.; Sánchez-Arévalo, F. Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrogels. Carbohydr. Polym. 2020, 236, 115971. [Google Scholar] [CrossRef]
- Camino, G.; Lomakin, S.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395–2402. [Google Scholar] [CrossRef]
- Chenoweth, K.; Cheung, S.; van Duin, A.C.T.; Goddard, W.A.; Kober, E.M. Simulations on the Thermal Decomposition of a Poly(dimethylsiloxane) Polymer Using the ReaxFF Reactive Force Field. J. Am. Chem. Soc. 2005, 127, 7192–7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camino, G.; Lomakin, S.; Lageard, M. Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 2002, 43, 2011–2015. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, F.M.; Garnica-Palafox, I.M.; Jagdale, P.; Hernández-Cordero, J.; Rodil, S.E.; Okonkwo, A.O.; Hernandez, F.C.R.; Tagliaferro, A. Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. Opt. Mater. Express 2015, 5, 1792–1805. [Google Scholar] [CrossRef]
- Ataollahi, F.; Pramanik, S.; Moradi, A.; Dalilottojari, A.; Pingguan-Murphy, B.; Wan Abas, W.A.B.; Abu Osman, N.A. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J. Biomed. Mater. Res. A 2015, 103, 2203–2213. [Google Scholar] [CrossRef]
- Efimenko, K.; Wallace, W.E.; Genzer, J. Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. J. Colloid Interface Sci. 2002, 254, 306–315. [Google Scholar] [CrossRef]
- Kuo, A.C. Poly (dimethylsiloxane). In Polymer Data Handbook; Mark, J.E., Ed.; Oxford University Press: New York, NY, USA, 1999; pp. 411–435. [Google Scholar]
- Johnson, L.M.; Gao, L.; Shields, C.W., IV; Smith, M.; Efimenko, K.; Cushing, K.; Genzer, J.; López, G.P. Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 2013, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.; King, B.; Burkhead, T.; Xu, P.; Bessler, N.; Terentjev, E.; Panchapakesan, B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 2012, 23, 045501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vélez-Cordero, J.R.; Hernández-Cordero, J. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects. Langmuir 2015, 31, 10066–10075. [Google Scholar] [CrossRef]
- Küpper, T.E.; Schraut, B.; Rieke, B.; Hemmerling, A.; Schöffl, V.; Steffgen, J. Drugs and Drug Administration in Extreme Environments. J. Travel Med. 2006, 13, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.J.; Park, H. Near-infrared light for on-demand drug delivery. J. Biomater. Sci. Polym. Ed. 2018, 29, 750–761. [Google Scholar] [CrossRef]
- Loftsson, T. Chapter 2—Principles of Drug Degradation. In Drug Stability for Pharmaceutical Scientists; Loftsson, T., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 5–62. [Google Scholar]
- Lamberti, A.; Marasso, S.L.; Cocuzza, M. PDMS membranes with tunable gas permeability for microfluidic applications. RSC Adv. 2014, 4, 61415–61419. [Google Scholar] [CrossRef]
- Montemurro, N.; Anania, Y.; Cagnazzo, F.; Perrini, P. Survival outcomes in patients with recurrent glioblastoma treated with Laser Interstitial Thermal Therapy (LITT): A systematic review. Clin. Neurol. Neurosurg. 2020, 195, 105942. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Ku, M.J.; Qazi, R.; Nam, H.J.; Park, J.W.; Nam, K.S.; Oh, S.; Kang, I.; Jang, J.H.; Kim, W.Y.; et al. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat. Commun. 2021, 12, 535. [Google Scholar] [CrossRef]
- Ogden, R.W. Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids. Proc. R. Soc. Lond. A 1972, 326, 565–584. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, F.; Gonzalez-Cortez, O.; Pimentel-Dominguez, R.; Hernandez-Cordero, J.; Aguilar, G. Composite polymer membranes for laser-induced fluorescence thermometry. Opt. Mater. Express 2018, 8, 3072. [Google Scholar] [CrossRef] [Green Version]
- Shigley, J.; Mischke, C.; Budynas, R. Mechanical Engineering Design; McGraw-Hill Series in Mechanical Engineering; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Ferreira, R.T.L.; Amatte, I.C.; Dutra, T.A.; Bürger, D. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos. B Eng. 2017, 124, 88–100. [Google Scholar] [CrossRef]
- Lanzotti, A.; Grasso, M.; Staiano, G.; Martorelli, M. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3D printer. Rapid Prototyp. J. 2015, 21, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Johnston, I.; McCluskey, D.; Tan, C.; Tracey, M. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 2014, 24, 035017. [Google Scholar] [CrossRef]
Peak in Figure 3a | IR Region (cm) | Description | Similar Results |
---|---|---|---|
1 | 600 | Stretching of Si–C | [42] |
2 | 699 | Stretching of Si–O–Si | [42] |
3 | 785–815 | CH Rocking and Si–C stretching in Si–CH | [43] |
4 | 875–920 | Si–O stretching in Si–OH | [43] |
5 | 1055–1090 | Asymmetric stretching of Si–O–Si | [43] |
6 | 1256–1269 | Symmetric deformation CH in Si–CH | [42,43] |
7 | 1410 | Si–CH=CH | [42,44] |
8 | 2900–2960 | Asymmetric stretching CH in Si–CH | [42,45] |
PDMS/CNPs 0.1%, d = 5 mm | PDMS/CNPs 0.5%, d = 9 mm | ||||
---|---|---|---|---|---|
Optical Power | Slope | ODF | Optical Power | Slope | ODF |
(mW) | (mNs) | (mN) | (mW) | (mNs) | (mN) |
100 | 0.13 | 24 ± 0.6 | 100 | 0.27 | 30 ± 0.6 |
125 | 0.13 | 26 ± 0.4 | 128 | 0.67 | 61 ± 0.8 |
150 | 0.16 | 33 ± 0.8 | 156 | 1.10 | 95 ± 1.2 |
175 | 0.22 | 39 ± 0.8 | 184 | 1.30 | 102 ± 0.9 |
200 | 0.33 | 55 ± 0.8 | 210 | 1.30 | 104 ± 0.4 |
PDMS/CNPs 1%, d = 10 mm | PDMS/CNPs 3%, d = 16 mm | ||||
Optical Power | Slope | ODF | Optical Power | Slope | ODF |
(mW) | (mNs) | (mN) | (mW) | (mNs) | (mN) |
100 | 0.33 | 36 ± 0.3 | 100 | 0.65 | 21 ± 0.4 |
120 | 0.76 | 56 ± 0.5 | 133 | 0.88 | 31 ± 0.5 |
140 | 1.01 | 82 ± 0.7 | 166 | 1.22 | 46 ± 0.7 |
160 | 1.27 | 94 ± 0.5 | 199 | 1.55 | 57 ± 0.8 |
180 | 1.60 | 112 ± 0.6 | 230 | 1.89 | 68 ± 0.6 |
Content CNPs | T | E | VD | ODF | LR | LE | CF | |
---|---|---|---|---|---|---|---|---|
(%) | (C) | (MPa) | (%) | (mN) | (MPa) | (mNs) | (J) | (kPaJ) |
0.1% | 70–80 | 1.26 | 13.74 | 55 | 194 | 0.33 | 20 | 9.7 |
0.5% | 80–90 | 1.43 | 13.75 | 104 | 275 | 1.3 | 6.6 | 41.9 |
1% | 50–60 | 1.52 | 12.2 | 112 | 295 | 1.6 | 4.6 | 64.7 |
3% | 30–40 | 1.44 | 12.5 | 68 | 216 | 1.89 | 0.9 | 237.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Lugo, J.D.; Pimentel-Domínguez, R.; Benítez-Martínez, J.A.; Hernández-Cordero, J.; Vélez-Cordero, J.R.; Sánchez-Arévalo, F.M. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules 2021, 26, 5376. https://doi.org/10.3390/molecules26175376
López-Lugo JD, Pimentel-Domínguez R, Benítez-Martínez JA, Hernández-Cordero J, Vélez-Cordero JR, Sánchez-Arévalo FM. Photomechanical Polymer Nanocomposites for Drug Delivery Devices. Molecules. 2021; 26(17):5376. https://doi.org/10.3390/molecules26175376
Chicago/Turabian StyleLópez-Lugo, Jonathan David, Reinher Pimentel-Domínguez, Jorge Alejandro Benítez-Martínez, Juan Hernández-Cordero, Juan Rodrigo Vélez-Cordero, and Francisco Manuel Sánchez-Arévalo. 2021. "Photomechanical Polymer Nanocomposites for Drug Delivery Devices" Molecules 26, no. 17: 5376. https://doi.org/10.3390/molecules26175376