Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure–Activity Relationship
Abstract
:1. Introduction
2. Literature Sources and Search Strategy
3. Occurrence of Euphorbia Diterpenes
4. Higher Diterpenes
4.1. Abietanes, Atisane, Cembranes, Ent-Abietanes, Ent-Labdanes and Ent-Isopimaranes
4.2. Abietane and Ent-Abietanes
4.3. Meroterpenoids
4.4. Ent-Atisanes, Ent-Isopimaranes, Cembranes and Labdanes
5. Lower Diterpenes
5.1. Ingenanes
5.2. Jatrophanes and Modified Jatrophanes
5.3. Lathyranes Diterpenes
5.4. Meroterpenoids
5.5. Tiglianes
5.6. Other Euphorbia Diterpenes
No | Species Name | Compound Name | Plant Part, Extraction Solvent | Pharmacological Effect (Cell Type, Reported Value and Control) | Reference |
---|---|---|---|---|---|
Abietane | |||||
1 | E. peplus | 11,12-didehydro-8α,14-dihydro-7-oxo-helioscopinolide A | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM. Control (pactlitaxel and cisplatin) | [38] |
2 | 7α-hydroxy-8α,14-dihydro jolkinolide E | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM. Control (pactlitaxel and cisplatin). | [38] | |
3 | E. stracheyi | ent-11β-hydroxyabieta-8(14),13(15)-dien-16,12-olide | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00 µM) compared to IC50 of 0.015, 0.53 µM, respectively of taxol, the positive control | [32] |
4 | E.neriifolia | 1α,9β-dihydroxy-ent-abieta-8(14),13(15)-dien-16,12-olide | Aerial, EtOH | Antiangiogenic activity (HUVECs migration); no activity (IC50 > 50.00 µg/mL) | [68] |
5 | 1α-hydroxy-14-oxo-ent-abieta-8,13(15)-dien-16,12-olide | Aerial, EtOH | Antiangiogenic activity (HUVECs migration); no activity (IC50 > 50.00 µg/mL) | [68] | |
Atisane | |||||
6 | E. kansuensis | atisane-3-oxo-16α,17-diol | Roots, EtOH | Inhibition of NO (IC50 > 50 µM; quercetin (IC50 = 10.80 µM) | [35] |
Cembrane | |||||
7 | E. pekinensis | euphopane C | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 32.30, 29.30 and >50 µM respectively). Doxorubicin (0.53, 1.06 and 0.78 µM respectively) | [35] |
8 | E. royleana | euphoroylean A | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 50 µM, Controls: verapamil (Vrp) (10.65 µM), tariquidar (Tar) (2.31 µM) | [33] |
9 | euphoroylean B | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 50 µM, Controls: Vrp (10.65 µM), tar (2.31 µM) | [33] | |
ent-abietane | |||||
10 | E. peplus | 11-hydroxy-ent-abieta-8,11,13-trien-15-one | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM, using pactlitaxel and cisplatin as control. | [38] |
11 | E. wallichii | 11β-hydroxy-14-oxo-17-al-ent-abieta-8(9), 13(15)-dien-16,12β-olide | Roots, EtOH | Antibacterial (T25-17; MIC = 37.00 µg/L, C159-6; MIC = 45.00 µg/L, 8152; MIC = 56.00 µg/L) using gentamicin as positive control | [47] |
12 | 11β, 17-dihydroxy-12-methoxy-ent-abieta-8(14), 13(15)-dien-16,12A-olide | Roots, EtOH | Antibacterial (T25-17; MIC = 41.00 µg/L, C159-6; MIC = 49.00 µg/L, 8152; MIC = 60.00 µg/L) using gentamicin as positive control | [47] | |
13 | 14α-hydroxy-17-al-entabieta-7(8), 1 1(12), 13(15)-trien-16, 12-olide | Roots, EtOH | Antibacterial (T25-17; MIC = 35.00 µg/L, C159-6; MIC = 51.00 µg/L, 8152; MIC = 59.00 µg/L) using gentamicin as positive control | [47] | |
14 | E. fischeriana | euphoractone | Roots, EtOH | Cytotoxic (H23; IC50 = 21.07 mmol/L, H460; IC50 = 20.91 mmol/L) using cisplatin the positive control | [60] |
15 | E. antiquorum | euphonoid F | Aerial, EtOH | Melanin synthesis (B16 cells) No activity | [34] |
16 | E. pekinensis | euphopane B | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 16.90, 36.80 and > 50 µM respectively). Doxorubicin (0.53, 1.06 and 0.78 µM respectively) | [35,44] |
17 | E. neriifolia | eupneria A | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] |
18 | eupneria B | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] | |
19 | eupneria C | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] | |
20 | eupneria D | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] | |
21 | eupneria E | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] | |
22 | eupneria F | Stem barks, C3H6O: H2O (7:3) | Anti-infammatory (RAW 264.7) and anti-influenza (A/WSN/33/2009 (H1N1). Inactive, using oseltamivir positive control | [69] | |
23 | eupneria G | Stem barks, C3H6O: H2O (7:3) | Anti-HIV (inactive, EC50 > 25 µg/mL), Cytotoxic (Hep-G2; IC50 = 13.70 µM; adriamycin (IC50 = 7.03 µM) | [70] | |
24 | eupneria H. | Stem barks, C3H6O: H2O (7:3) | Anti-HIV (inactive, EC50 > 25 µg/mL), Cytotoxic (Hep-G2; IC50 = 13.70 µM; adriamycin (IC50 = 7.03 µM) | [70] | |
25 | eupneria I | Stem barks, C3H6O: H2O (7:3) | Anti-HIV (inactive, EC50 > 25 µg/mL), Cytotoxic (Hep-G2; IC50 = 13.70 µM; adriamycin (IC50 = 7.03 µM) | [70] | |
26 | E.fischeriana | fischerianoids A | Roots, C3H6O | Cytotoxic (HL-60; no activity, MM-231; IC50 = 12.10 µM, A549; no activity, SMMC-7721; IC50 = 32.58 µM, Hep-3B; IC50 = 15.95 µM), cisplatin; 1.60, 3.82, 2.81, 2.78 and 2.97 µM respectively) | [61] |
27 | fischerianoids B | Roots, C3H6O | Cytotoxic (HL-60; IC50 = 28.78 µM, MM-231; IC50 = 9.12 µM, A549; no activity, SMMC-7721; no activity, Hep-3B; IC50 = 8.50 µM), cisplatin; 1.60, 3.82, 2.81, 2.78 and 2.97 µM respectively) | [61] | |
28 | fischerianoids C | Roots, C3H6O | Cytotoxic (HL-60; no activity, MM-231; IC50 = 25.45 µM, A549; no activity, SMMC-7721; no activity, Hep-3B; IC50 = 27.34 µM), cisplatin; 1.60, 3.82, 2.81, 2.78 and 2.97 µM respectively) | [61] | |
ent-atisane | |||||
29 | E. stracheyi | ent-atis-16-ene-3,14-dione | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00) compared to IC50 of 0.015, 0.53 µM, respectively of taxol, the positive control | [32] |
30 | E. royleana | euphoroylean F | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] |
31 | euphoroylean G | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
32 | E. antiquorum | ent-3α-acetoxy-16β,17,18-trihydroxyatisane | Stems, MeOH | Inhibitory (α-glucosidase); IC50 = 119.90 µM. Cytotoxicity (K562; no activity). Acarbose (IC50 = 162.50 µM) | [54] |
33 | E. antiquorum | ent-3α,14,16b,17-tetrahydroxyatisane | Stems, MeOH | Inhibitory (α-glucosidase); IC50 > 200.00 µM. Cytotoxicity (K562; no activity). Acarbose (IC50 = 162.50 µM) | [54] |
34 | ent-14[S],16α,17-trihydroxyatisan-3-one | Stems, MeOH | Inhibitory (α-glucosidase); IC50 = 135.50 µM. Cytotoxicity (K562; no activity). Acarbose (IC50 = 162.50 µM) | [54] | |
35 | gallochaol C | Stems, MeOH | Inhibitory (α-glucosidase); IC50 = 134.30 µM. Cytotoxicity (K562; no activity). Acarbose (IC50 = 162.50 µM) | [54] | |
36 | E. kansuensis | ent-atisane-3β,16α,17-triol | Roots, EtOH | Inhibition of NO (IC50 > 50 µM; quercetin (IC50 = 10.80 µM) | [35] |
37 | E.antiquorum | euphorin A | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 35.80 µM); 2-methyl-2-thiopseudourea, sulfate (SMT) (4.2 µM) | [56] |
38 | euphorin B | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 41.40 SMT (4.2 µM); SMT (4.2 SMT (4.2 µM) | [56] | |
39 | E. royleana | (4R,5S,8S,9R,10S,12S,16S)-ent-19-acetoyloxy-16α,17-dihydroxyatisan-3-one | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 > 50 µM); SMT (3.7 µM) | [75] |
40 | (4R,5R,8S,9R, -10R,12S,16S)-ent-16α,17-dihydroxy-19-noratisan-3-one | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 > 50 µM); SMT (3.7 µM) | [75] | |
41 | E. antiquorum | ent-(3α,5β,8α,9β,10α,12α)-3-hydroxyatis-16-en-14-one | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 71.0 SMT (4.2 µM); SMT (4.2 SMT (4.2 µM) | [56] |
ent-isopimarane | |||||
42 | E. neriifolia | eupneria J. | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3; 0.31 μg/mL), AZT; 0.0043 μg/mL | [73] |
43 | eupneria K. | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
44 | eupneria L | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
45 | eupneria M | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
46 | eupneria N | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
47 | eupneria O | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
48 | eupneria P | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
49 | eurifoloid I | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
50 | oryzalexin F | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
51 | eurifoloid H | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3; 6.70 μg/mL), MDCK, AZT; 0.0043 μg/mL | [73] | |
52 | ent-isopimara-8(14),15-dien-3β,12β-diol | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), MDCK; 3.86 μg/mL. AZT; 0.0043 μg/mL | [73] | |
53 | 3α,12α-dihydroxy-ent-8(14),15-isopimaradien-18-al | Stem barks, EtOH | Anti-HIV (HIV-1 NL4-3), inactive (IC50 > 25.00 µg/mL), AZT; 0.0043 μg/mL | [73] | |
54 | E. royleana | (1S,5R,9R,10R,12R)-1α-acetoyloxy-ent-abieta-8(14),13-(15)-dien-12α,l6- | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 12.0 µM); SMT (3.7 µM) | [75] |
55 | (1S,4S,5R,9R,10S,12R)-1α,18-dihydroxy-ent-abieta-8(14),13(15)-dien-12α,l6-olide | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 > 50 µM); SMT (3.7 µM) | [75] | |
56 | E. hylonoma | (2R,3S,12S)-2,3,12-trihydroxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 = 45.48 µM; indomethacin (IC50 = 41.41 µM) | [45] |
57 | (2R,3S,11R,12S)-2,3-dihydroxy-11,12-epoxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; not evaluated, indomethacin (IC50 = 41.41 µM) | [45] | |
58 | (1R,2S,3S,12S)-1,2-epoxy-3,12-dihydroxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; not evaluated, indomethacin (IC50 = 41.41 µM) | [45] | |
59 | (1R,2S,3R,12S)-1,2-epoxy-3,12-dihydroxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 = 57.51 µM; indomethacin (IC50 = 41.41 µM) | [45] | |
60 | (1R,2S,3S,12R)-1,2,3,12-tetrahydroxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; not active; indomethacin (IC50 = 41.41 µM) | [45] | |
61 | (1R,2S,3R,12R)-1,2,3,12-tetrahydroxy-ent-isopimara-7,15-diene | Roots, EtOH | Inhibitory (NO in RAW264.7; not active µM; indomethacin (IC50 = 41.41 µM) | [45] | |
62 | (2S,12R)-2,12-dihydroxy-ent-isopimara-7,15-dien-3-one | Roots, EtOH | Inhibitory (NO in RAW264.7; not active; indomethacin (IC50 = 41.41 µM) | [45] | |
63 | 3α,12β-dihydroxy-ent-isopimara-8,15-dien-11-one | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 > 100 µM; indomethacin (IC50 = 41.41 µM) | [45] | |
64 | (12R,13R,15R)-2,15-dihydroxy-12,16-epoxy-12-methoxy-ent-isopimara-1,7-dien-3-one | Roots, EtOH | Inhibitory (NO in RAW264.7; not active; indomethacin (IC50 = 41.41 µM) | [45] | |
ent-kaurane | |||||
65 | E. royleana | euphoroylean H | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] |
66 | (4R,5S,8S,9R,10S,13R,16S)-ent-16α,17-dihydroxy-19-(2β-methylbutanoyloxy)kauran-3-one | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 32.60 µM); SMT (3.7 µM) | [75] | |
67 | (4R,5S,8S,9R,10S,13R,16S)-ent-16α,17-dihydroxy-19-tigloyloxykauran-3-one | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 19.30 µM); SMT (3.7 µM) | [75] | |
ent-labdane | |||||
68 | E. peplus | helioscopinolide A | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM, using paclitaxel and cisplatin as control. | [38] |
69 | E. kansuensis | helioscopinolide A | Roots, EtOH | Inhibition of NO (IC50 = 47.0 µM; quercetin (IC50 = 10.80 µM) | [35] |
70 | neriifolene | Roots, EtOH | Inhibition of NO (IC50 > 50 µM; quercetin (IC50 = 10.80 µM) | [35] | |
71 | E. yinshanica | ent-3α,16-dihydroxylabda-8(17),12(E),14-triene | Roots, EtOH | Cytotoxic (HL-60, SMMC-7721, A-549, MCF-7, SW-480); not active (IC50 > 40 µM) using cisplatin control | [51] |
72 | ent-14(S),15-dihydroxylabda-8(17)-12(E)-dien-18-oic acid | Roots, EtOH | Cytotoxic (HL-60, SMMC-7721, A-549, MCF-7, SW-480); not active (IC50 > 40 µM) using cisplatin control | [51] | |
ent-rosane | |||||
73 | E. neriifolia | euphominoid E | Stems, MeOH | Not evaluated | [71] |
74 | E. hylonoma | ent-rosa-1(10),15-dien-2-one | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 = 48.40 µM; Indomethacin (IC50 = 41.41 µM) | [45] |
75 | E. milii | euphominoid A | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 = 13.20 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] |
76 | euphominoid B | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 = 5.40 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
77 | euphominoid C | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 = 24.40 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
78 | euphominoid D | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
79 | euphominoid E | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
80 | euphominoid F | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
81 | euphominoid G | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
82 | euphominoid H | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
83 | euphominoid I | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
84 | euphominoid J | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 = 29.21 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
85 | 5-epi-euphominoid J | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
86 | euphominoid K | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
87 | euphominoid L | Aerial, C3H6O | Inhibitory (anti-EBV lytic replication; EC50 > 50 µM) compared to (+)-rutamarin (EC50 = 5.40 µM) | [46] | |
Gaditanone | |||||
88 | E. gaditana | gaditanone | Whole plant, MeOH | Not evaluated | [27] |
Ingenane | |||||
89 | E. stracheyi | 3β, 20-diacetoxy-5β-deca-2′′E, 4′′E, 6′′E-trien-4β-hydroxyl-1-one | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 23.76 µM; taxol (0.015 µM), MV4-11; IC50 = 7.92 µM; taxol (0.055 µM), BaF3; IC50 > 20.00 µM compared to IC50 of 0.015, 0.53 µM, respectively of taxol | [32] |
90 | ingenane | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 48.81; taxol (0.015 µM), MV4-11; 7.92; taxol (0.055 µM) BaF3; IC50 > 20.00) compared to IC50 of 0.015, 0.53 µM, respectively of taxol | [32] | |
91 | 20-O-acetyl-[3-O-(2′E, 4′Z)-decadienoyl]-ingenol | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 41.51; taxol (0.015 µM) MV4-11; IC50 = 3.18; taxol (0.055 µM) BaF3, compared to IC50 of 0.015, 0.53 µM, respectively of taxol | [32] | |
92 | 3-O-(2′E, 4′Z)-decadienoylingenol | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 48.51; taxol (0.015 µM); MV4-11; IC50 = 10.80; taxol (0.055 µM) compared to IC50 of 0.015, 0.53 µM, respectively of taxol | [32] | |
93 | E. kansui | 3-O-(2′E, 4′Z-decadienoyl)-20-O-acetylingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 = 24.49 µM) | [65] |
94 | 5-O-(2′E, 4′Z-decadienoyl)-20-O-acetylingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
95 | 3-O-(2′E, 4′E-decadienoyl)-20-O-acetylingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 = 24.07 µM, DU145; IC50 = 8.20 µM) | [65] | |
96 | 5-O-(2′E, 4′E-decadienoyl)-20-O-acetylingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 25.76 µM, Hep-G2; IC50 = 26.96 µM, DU145; IC50 = 16.24 µM) | [65] | |
97 | 20-O-(2′E, 4′Z-decadienoyl) ingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 30.48 µM, Hep-G2; IC50 = 12.79 µM, DU145; IC50 = 8.86 µM) | [65] | |
98 | 20-O-(2′E, 4′E-decadienoyl) ingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
99 | 20-O-acetylingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
100 | 5-O-benzoyl-20-deoxyingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 28.35 µM, Hep-G2; IC50 = 24.56 µM, DU145; IC50 = 15.55 µM) | [65] | |
101 | 3-O-benzoyl-20-deoxyingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 25.56 µM, Hep-G2; IC50 = 23.75 µM, DU145; IC50 = 9.91 µM) | [65] | |
102 | kansuiphorin C | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 12.58 µM, Hep-G2; IC50 = 25.00 µM, DU145; IC50 = 7.38 µM) | [65] | |
103 | 20-deoxyingenol | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
104 | kansuinin D | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
105 | kansuinins A | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
106 | kansuinin E | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
107 | kansuinin B | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [59,65] | |
108 | 3,5,7,15-tetraacetoxy-9-nicotinoyloxy- 14-oxojatropha-6(17),11-diene | Roots, EtOH | Antiproliferative (MCF-7; IC50 > 30 µM, Hep-G2; IC50 > 30 µM, DU145; IC50 > 30 µM) | [65] | |
109 | E. royleana | euphoroylean C | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 50 (10.65 µM), tar (2.31 µM) | [33] |
110 | euphoroylean D | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 50 (10.65 µM), tar (2.31 µM) | [33] | |
111 | euphoroylean E | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 50 (10.65 µM), tar (2.31 µM) | [33] | |
112 | E. antiquorum | 20-deoxy-16-hydroxyingenol | Stems, MeOH | α-glucosidase inhibitory; IC50 > 200.00 µM, cytotoxicity (K562; inactive) | [54,55] |
113 | E. lathyris | ingenol 6,7-epoxy | Seeds, EtOH | Not evaluated | [31] |
114 | E. kansuensis | euphorkanlide A | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 14.30, 28.20 and > 50 µM respectively). Doxorubicin (0.53, 1.06 and 0.78 µM) | [36] |
Ingenol | |||||
115 | E. saudiarabica | saudiarabicain A | Aerial, EtOH | Inhibitory (α-glucosidase; IC50 > 150.00 µM, P-glycoprotein; IC50 = 0.80 µM | [28] |
116 | saudiarabicain B | Aerial, EtOH | Inhibitory (α-glucosidase; IC50 > 150.00 µM. P-glycoprotein control; IC50 = 1.40 µM | [28] | |
117 | E. antiquorum | euphonoid A | Aerial, EtOH | Melanin synthesis (B16; 159.89% at 50.00 µM. 8-MOP; 124.38%) | [34] |
118 | 3,8,12-O-triacetylingol-7-benzoate | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
119 | ingol-3,8,12-O-triacetate-7-tiglate | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
120 | 3,12-O-diacetylingol-7-benzoate-8-methoxyl | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
121 | 3,12-diacetyl-7-angeloyl-8-methoxyingol | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
122 | 3,12-diacetyl-7-tigloyl-8-methoxyingol | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
123 | euphorantin I | Aerial, EtOH | Melanin synthesis (B16; 203.11% at 50.00 µM. 8-MOP; 124.38%) | [34] | |
124 | 12-acetyl-7-angeloyl-8-methoxyingol | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
125 | 3,12-diacetyl-ingol-7-tigliate | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, No activity | [34] | |
126 | 3,12-diacetyl-7-angolyl-8-hydroxyingol | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
127 | euphorantin J | Aerial, EtOH | Melanin synthesis (B16; 177.43% at 50.00 µM. 8-MOP; 124.38%) | [34] | |
128 | tirucalicine | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
129 | eurifoloid A | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
130 | 3-O-[(Z)-2-methyl-2-butenoyl]-20-O-acetylingenol | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
131 | eurifoloid L | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] | |
132 | E. antiquorum | antiquorine A | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, no activity | [34] |
Ingol | |||||
133 | E. saudiarabica | saudiarabicain C | Aerial, EtOH | Inhibitory (α-glucosidase; IC50 = 9.10 µM. P-glycoprotein IC50 = 0.10 µM | [28] |
134 | saudiarabicain D | Aerial, EtOH | Inhibitory (α-glucosidase; IC50 = 8.00 µM. P-glycoprotein; IC50 = 0.10 µM | [28] | |
135 | saudiarabicain E | Aerial, EtOH | Inhibitory (α-glucosidase; IC50 = 1.80 µM. P-glycoprotein; IC50 = 0.60 µM | [28] | |
136 | E. royleana | ingol | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] |
137 | quorumolide C | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
138 | (3S,4S,5R,8S,10S,11R,13R,14R,15R)-3β-O-angeloyl-17-tigloyloxy-20- deoxyingenol | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33,75] | |
139 | 20-acetyl-ingenol-3-angelate | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
140 | 3-angelate- 20-hydroxyl-ingenol | whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
141 | (3S,4S,5R,8S,10S,11R,13R,14R,15R) -3β-O-angeloyl-17-benzoyloxy-20- deoxyingenol | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33,75] | |
142 | E. marginata | euphornan A | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] |
143 | euphornan B | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
144 | euphornan C | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
145 | euphornan D | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 50 µM at 5 µM). Adriamycin control | [41] | |
146 | euphornan E | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
147 | euphornan F | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
148 | euphornan G | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
149 | euphornan H | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
150 | euphornan I | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
151 | euphornan J | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
152 | euphornan K | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
153 | euphornan L | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
154 | euphornan M | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
155 | euphornan N | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
156 | euphornan O | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
157 | euphornan P | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
158 | euphornan Q | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
159 | euphornan R | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 25 µM at 5 µM). Adriamycin control | [41] | |
160 | euphornan S | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
161 | euphornan T | Seeds, EtOH | Multidrug reversal activity (Hep-G2/ADR; IC50 > 100 µM at 5 µM). Adriamycin control | [41] | |
162 | E. resinifera | euphoresins A | Latex, MeOH | Cytotoxic (MCF-7; IC50 = 85.87 µM, C6; IC50 = 8.31 µM) compared to taxol; 5.48, 6.79 and 8.31 µM respectively | [43] |
163 | euphoresins B | Latex, MeOH | Cytotoxic (MCF-7; IC50 = 87.36 µM, C6; IC50 = 94.89 µM) compared to taxol; 5.48, 6.79 and 8.31 µM respectively | [43] | |
164 | euphorantin S | Stem barks, C3H6O | Anti-HIV-1 (EC50 > 44 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] | |
165 | E. neriifolia | euphorantin T | Stem barks, C3H6O | Anti-HIV-1 (EC50 > 44 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] |
166 | euphorneroid A | Stem barks, C3H6O | Anti-HIV-1 (EC50 > 44 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] | |
167 | euphorneroid B | Stem barks, C3H6O | Anti-HIV-1 (EC50 > 44 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] | |
168 | euphorneroid C | Stem barks, C3H6O | Anti-HIV-1 (EC50 > 44 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] | |
169 | euphorneroid D | Stem barks, C3H6O | Anti-HIV-1 (EC50 = 34 µM) compared to zidovudine (AZT); EC50 = 0.0019 µM | [42] | |
Isopimarane | |||||
170 | E. pekinensis | euphopane A | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 32.30, 29.30 and > 50 µM respectively) compared to doxorubicin (0.53, 1.06 and 0.78 µM) | [44] |
171 | (12β)-2,12-dihydroxyisopimara-1,7,15-trien-3-one | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 32.30, > 50 and > 50 µM respectively) compared to doxorubicin (0.53, 1.06 and 0.78 µM) | [44] | |
172 | yuexiandajisu C | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 23.10, 30.0 and > 50 µM respectively) compared to doxorubicin (0.53, 1.06 and 0.78 µM) | [44] | |
173 | (3β,12α,13α)-3,12-dihydroxypimara-7,15-dien-2-one | Roots, EtOH | Cytotoxic (C4-24B; C4-2B/ENZR, MDA-MB-231, IC50 = 32.60, > 50 and > 50 µM respectively) compared to doxorubicin (0.53, 1.06 and 0.78 µM) | [44] | |
Jatrophane | |||||
174 | E. kansui | kansuingenol A | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 20.86 µM, Hep-G2; IC50 = 14.20 µM, DU145; IC50 = 6.19 µM) | [65] |
175 | kansuingenol B | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 15.82 µM, Hep-G2; IC50 = 29.16 µM, DU145; IC50 = 9.27 µM) | [65] | |
176 | kansuingenol C | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 10.26 µM, Hep-G2; IC50 = 23.09 µM, DU145; IC50 = 26.06 µM) | [65] | |
177 | kansuijatrophanol A | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 21.64 µM, Hep-G2; IC50 = 20.19 µM, DU145; IC50 = 7.21 µM) | [65] | |
178 | kansuijatrophanol B | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 15.25 µM, Hep-G2; IC50 = 13.24 µM, DU145; IC50 = 7.24 µM) | [65] | |
179 | kansuijatrophanol C | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 11.25 µM, Hep-G2; IC50 = 9.47 µM, DU145; IC50 = 8.29 µM) | [65] | |
180 | kansuijatrophanol D | Roots, EtOH | Antiproliferative (MCF-7; IC50 = 6.29 µM, Hep-G2; IC50 = 10.07 µM, DU145; IC50 = 4.19 µM) | [65] | |
181 | E. helioscopia | euphoheliphane A | Aerial, EtOH | Cytotoxic (OS-RC-2; IC50 = 47.00 µM, Ketr-3; IC50 = 45.00 µM, 769-P; IC50 = 43.00 µM, G401; IC50 = 38.00 µM, GRC-1; IC50 = 41.00 µM, ACHN; IC50 = 40.00 µM compared to doxorubicin (DOX); 5, 4, 3, 5, 4, and 3 µM respectively | [50] |
182 | euphoheliphane B | Aerial, EtOH | Cytotoxic (OS-RC-2; IC50 = 31.00 µM, Ketr-3; IC50 = 32.00 µM, 769-P; IC50 = 30.00 µM, G401; IC50 = 34.00 µM, GRC-1; IC50 = 33.00 µM, ACHN; IC50 = 35.00 µM compared to doxorubicin (DOX); 5, 4, 3, 5, 4, and 3 µM respectively | [50] | |
183 | euphoheliphane C | Aerial, EtOH | Cytotoxic (OS-RC-2; IC50 = 35.00 µM, Ketr-3; IC50 = 41.00 µM, 769-P; IC50 = 39.00 µM, G401; IC50 = 32.00 µM, GRC-1; IC50 = 38.00 µM, ACHN; IC50 = 36.00 µM compared to doxorubicin (DOX); 5, 4, 3, 5, 4, and 3 µM respectively | [50] | |
184 | E. esula | euphoesulatin A | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 1.20 µM) compared to RANKL control | [100] |
185 | euphoesulatin B | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
186 | euphoesulatin C | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
187 | euphoesulatin D | Whole plant, EtOH | Inhibitory (BMM; IC50 = 6.60 µM) compared to RANKL control | [100] | |
188 | euphoesulatin E | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 5.90 µM) compared to RANKL control | [100] | |
189 | euphoesulatin F | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 6.10 µM) compared to RANKL control | [100] | |
190 | euphoesulatin G | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 10.00 µM) compared to RANKL control | [100] | |
191 | euphoesulatin H | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 3.50 µM) compared to RANKL control | [100] | |
192 | euphoesulatin I | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
193 | euphoesulatin J | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 2.30 µM) compared to RANKL control | [100] | |
194 | euphoesulatin K | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
195 | euphoesulatin L | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
196 | euphoesulatin M | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 7.60 µM) compared to RANKL control | [100] | |
197 | euphoesulatin N | Whole plant, EtOH | Ostiosteoporotic activity (BMM; not active, compared to RANKL control | [100] | |
198 | euphoesulatin O | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 = 5.90 µM), compared to RANKL control | [100] | |
199 | euphoesulatin P | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
200 | euphoesulatin Q | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
201 | euphoesulatin R | Whole plant, EtOH | Ostiosteoporotic activity (BMM; IC50 > 10 µM) compared to RANKL control | [100] | |
202 | esulone B | Whole plant, EtOH | Ostiosteoporotic activity (BMM; No activity) compared to RANKL control | [100] | |
203 | kansuinine B | Whole plant, EtOH | Ostiosteoporotic activity (BMM; not active, compared to RANKL control | [59,100] | |
204 | esulone A | Whole plant, EtOH | Ostiosteoporotic activity (BMM; not active, compared to RANKL control | [59,100] | |
205 | euphoresulane A | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), adriamycin (ADR); IC50 = 284.50 µM | [59] | |
206 | euphoresulane B | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 25 µM), ADR; IC50 = 284.50 µM | [59] | |
207 | euphoresulane C | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
208 | euphoresulane D | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
209 | euphoresulane E | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
210 | euphoresulane F | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 50 µM), ADR; IC50 = 284.50 µM | [59] | |
211 | euphoresulane G | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
212 | euphoresulane H | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 = 165.30 µM, ADR; IC50 = 284.50 µM | [59] | |
213 | euphoresulane I | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
214 | euphoresulane J | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
215 | euphoresulane K | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
216 | euphoresulane L | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
217 | euphoresulane M | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
218 | kanesulone A | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
219 | 3β,7β,8α,15β-tetraacetoxy-5α-benzoyloxyjatropha-6(17), 11E-dien-9,14-dione | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
220 | kanesulone B | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
221 | (2S,3S,4R,5R,7S,8R,13R,15R)−3,5,7,8,15-pentaacetoxy-9,14-dioxojatropha-6(17),11E-diene | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
222 | kansuinin C | Whole plant, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100 µM), ADR; IC50 = 284.50 µM | [59] | |
223 | E. glomerulans | euphoglomeruphane A | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] |
224 | euphoglomeruphane B | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
225 | euphoglomeruphane C | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
226 | euphoglomeruphane D | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
227 | euphoglomeruphane E | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
228 | euphoglomeruphane F | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
229 | euphoglomeruphane G | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
230 | euphoglomeruphane H | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 = 39.30 µM), verapamil; IC50 = 4.70 µM | [29] | |
231 | euphoglomeruphane I | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
232 | euphoglomeruphane J | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
233 | euphoglomeruphane K | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
234 | euphoglomeruphane L | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 = 50.20 µM), verapamil; IC50 = 4.70 µM | [29] | |
235 | euphoglomeruphane M | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
236 | euphoglomeruphane N | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
237 | euphoglomeruphane O | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
238 | euphoglomeruphane P | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
239 | euphoglomeruphane Q | Whole plant, C3H6O | MDR-chemoreversal (MCF-7/ADR IC50 > 100 µM), verapamil; IC50 = 4.70 µM | [29] | |
240 | E.helioscopia | heliojatrone C | Aerial, EtOH | Inhibitory (nitric oxide (NO) in RAW 264.7; IC50 = 7.40 μM) compared to dexamethasone (Dex) | [64] |
241 | heliojatrone D | Aerial, EtOH | Inhibitory (nitric oxide (NO) in RAW 264.7; not active, compared to Dex | [64] | |
242 | euphoscopoid E | Aerial, EtOH | Inhibitory (nitric oxide (NO) in RAW 264.7; not active, compared to Dex | [64] | |
243 | euphoscopoid F | Aerial, EtOH | Inhibitory (nitric oxide (NO) in RAW 264.7; IC50 > 50 μM) compared to Dex | [64] | |
244 | euphorhelipanes A | Whole plant, EtOH | Triglyceride lowering effect (HuH7) in range of 1–50 μM compared to rosiglitazone positive control | [99] | |
245 | euphorhelipanes B | Whole plant, EtOH | Triglyceride lowering effect (HuH7) in range of 1–50 μM compared to rosiglitazone positive control | [99] | |
Kaurane | |||||
246 | E. kansuensis | abbeokutone | Roots, EtOH | Inhibition of NO (IC50 = 43.60 µM; quercetin (IC50 = 10.80 µM) | [35] |
Lathyrane | |||||
247 | E. lathyris | euphorbia factor L2 | Seeds, EtOH | Not evaluated | [66,105] |
248 | euphorbia factor L3 | Seeds, EtOH | Not evaluated | [66,105] | |
249 | E. stracheyi | euphstrachenol A | Roots, MeOH | Cytotoxic (HGC-27; IC50 > 50; taxol (0.015 µM) MV4-11; IC50 = 12.29; (0.055 µM) BaF3; IC50 > 20.00, compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] |
250 | euphstrachenol B | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 49.90; taxol (0.015 µM); MV4-11; IC50 = 14.80; (0.055 µM), BaF3; IC50 > 20.00, compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
251 | euphstrachenol C | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00) compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
252 | (2R, 3S, 4R, 5R, 9S, 11S, 15R)-3, 5, 15-triacetoxy-14-oxolathyr- 6(17), 12E-diene | Roots, MeOH | Cytotoxic (HGC-27; IC50 > 50.00; taxol (0.015 µM) MV4-11; IC50 = 30.02; taxol (0.055 µM), BaF3; IC50 = 19.20, | [32] | |
253 | jolkinol B | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 39.00; taxol (0.015 µM) MV4-11; IC50 = 9.82; (0.055 µM), BaF3; IC50 = 11.20, compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
254 | jolkinol A | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00) compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
255 | jolkinoate C | Roots, MeOH | Cytotoxic (HGC-27; IC50 = 32.54; taxol (0.015 µM) MV4-11; IC50 = 15.37; (0.055 µM), BaF3; 18.80, SKvo3) compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
256 | jolkinol D | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00) compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
257 | jolkinoate | Roots, MeOH | Cytotoxic (HGC-27; IC50 > 50.00; taxol (0.015 µM), MV4-11; IC50 = 5.96; (0.055 µM), BaF3; IC50 = 13.40 compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
258 | 3β, 5α, 20-trihydroxy-15β-cinnamoyloxy-14-oxolathyra-6Z, 12E-diene | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00), taxol (0.015 µM) | [32] | |
259 | yuexiandajisu C | Roots, MeOH | Cytotoxic (HGC-27; IC50 > 50.00; taxol (0.015 µM), MV4-11; IC50 = 12.24; (0.055 µM), BaF3; IC50 = 13.40 µM compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
260 | jolkinolide E | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00), (0.015 µM compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
261 | stracheyioid C | Roots, MeOH | Cytotoxic (HGC-27, MV4-11, BaF3 SKvo3, IC50 > 50.00), (0.015 µM compared to IC50 of 0.015, 0.53 µM, respectively for taxol | [32] | |
262 | E. royleana | ingol-3,7,12-triacetate-8-benzoate | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 4.76 µM, Dox; 499.88 µM | [33] |
263 | ingol-3,8,12-triacetate-7-tiglate | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 27.29 µM, dox; 499.88 µM | [33] | |
264 | 3,7,12-O-triacetyl-8-O-(2-methylbutanoyl)-ingol | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 18.98 µM, dox; 499.88 µM | [33] | |
265 | euphorantin M | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 20.81 µM, dox; 499.88 µM | [33] | |
266 | 3,12-di-O-acetyl-8-O-tigloyl-ingol | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
267 | 8-O-methyl-ingol-3,12-diacetate-7-benzoate | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
268 | 3,8,12-O-triacetylingol-7-benzoate | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 11.18 µM, dox; 499.88 µM | [33] | |
269 | 8-O-methylingol-3,8,12-triacetate-7-angelate | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 17.83 µM, dox; 499.88 µM | [33] | |
270 | 3,12-diacetyl-8-benzoylingol | Whole plant, EtOH | MDR-chemoreversal (Hep-G2/DOX; IC50 = 17.83 µM, dox; 499.88 µM | [33] | |
271 | 8-O-methylingol-12-acetate-7-angelate | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
272 | ent-atis-16-ene-3,14-dione | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
273 | eurifoloid L | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
274 | eurifoloid J | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
275 | eurifoloid G | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
276 | eurifoloid E | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
277 | antiquorine A | Whole plant, EtOH | Chemoreversal, combination abilities on Hep-G2/DOX; IC50 > 100 (10.65 µM), tar (2.31 µM) | [33] | |
278 | 5, 15-di-O-acetoxy-3-nicotinoyllathyol-6, 13(20)-diene-12-ol-14-one | Seeds, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100.00 µM, ADR; IC50 = 28.00 µM | [106] | |
279 | 5, 15,17-O-tri- acetyl-3-O-nicotinoyllathyol-6,12-diene -14-one | Seeds, EtOH | MDR-chemoreversal (Hep-G2; IC50 = 37.25 µM, ADR; IC50 = 14.81 | [106] | |
280 | 15-O-acetoxy-3,7-di-O-benzoyllathyra-6(17),12-diene-5-ol-14-one | Seeds, EtOH | MDR-chemoreversal (Hep-G2; IC50 = 66.05 µM, ADR; IC50 = 27.09 µM | [106] | |
281 | 15-O-acetyl-3-O-phenlacetate-6, 17-epoxylathyra-5-ol-14-one | Seeds, EtOH | MDR-chemoreversal (Hep-G2; IC50 > 100.00 µM, ADR; IC50 > 100.00 µM | [106] | |
282 | euphorbia factor L9 | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine positive control | [75] | |
283 | euphorbia factor L15 | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
284 | euphorbia factor L8 | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
285 | 15-O-acetyl-3-O-nicotinoyljolkinol-5β,6β-oxide | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
286 | 15,17-di-O-acetyl-3-O-hexanoyl-17-hydroxyjolkinol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
287 | 15,17-di-O-acetyl-3-O-benzoyl-17-hydroxyjolkinol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
288 | 15,17-di-O-acetyl-3-O-cinnamoyl-17-hydroxyjolkinol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
289 | 15-O-acetyl-3-O-cinnamoyl-17-hydroxyjolkinol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
290 | 15-O-acetyl-3-O-phenylacetyl-17-hydroxyjolkinol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
291 | 15-acetoxy-3-O-hexanoyl-17-hydroxyjolkinol-12-en-17-ol-14-one | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
292 | 5,15,17-tri-O-acetyl-3-O-benzoyl-17-hydroxyisolathyrol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
293 | 5,15-di-O-acetyl-3-O-benzoyl-17-hydroxyisolathyrol | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
294 | 5,15-di-acetoxy-3-nicotinoyloxy-6,17-epoxylathyra-12-en-14-one | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
295 | ingenol-20-O-decanoyl | Seeds, EtOH | Ant-HIV-1; inactive compared to zidovudine control | [75] | |
296 | E. antiquorum | euphonoid B | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, inactive | [34] |
297 | euphonoid C | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, inactive | [34] | |
298 | euphonoid D | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, inactive | [34] | |
299 | euphonoid E | Aerial, EtOH | Melanin synthesis (B16) at 50.00 µM, inactive | [34] | |
300 | E. kansuensis | euphanoid A | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 = 4.70 µM), quercetin (IC50 = 10.80 µM) | [35] |
301 | euphanoid B | Roots, EtOH | Inhibitory (NO in RAW264.7; IC50 = 9.50 µM), quercetin (IC50 = 10.80 µM) | [35] | |
302 | E. lathyris | (2S,3S,4S,5R,9S,11R,15R)-15-acetoxy-3-cinnamoyloxy-5-hydroxy-14-oxolathyra-6(17),12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 = 3.00 µM compared to dexamethasone (7.9 µM) | [103] |
303 | (2S,3S,4S,5R,7R,9S,11R,15R)-7,15-diacetoxy-3-benzoyloxy-5-hydroxy-14-oxolathyra 6(17),12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 = 4.00 µM compared to dexamethasone (7.9 µM) | [103] | |
304 | (2S,3S,4R,5R,7R,9S,11R,15R)-5,15-diacetoxy-3-benzoyloxy-7-hydroxy-14-oxolathyra-6(17),12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 = 5.00 µM compared to dexamethasone (7.9 µM) | [103] | |
305 | (2S,3S,4R,9S,11R,15R)-15,17-diacetoxy-3-hydroxy-14-oxolathyra-5E,12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 > 50.0 µM compared to dexamethasone (7.9 µM) | [103] | |
306 | (2S,3S,4R,5R,7R,9S,11R,15R)-5,15-diacetoxy-3-benzoyloxy-7-hydroxy-14-oxolathyra-6(17),12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 > 50.0 µM compared to dexamethasone (7.9 µM) | [103] | |
307 | (2S,3S,4R,5R,9S,11R,15R)-3-benzoyloxy-5,17-diacetoxy-15-hydroxy-14-oxolathyra-6E,12E-diene | Seeds, EtOH | Inhibitory (NO in RAW264.7; IC50 > 100.0 µM compared to dexamethasone (7.9 µM) | [103] | |
308 | E.antiquorum | euphorin C | Stems, MeOH | Inhibitory (NO production in BV-2; inactive | [56] |
309 | euphorin D | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 32.00 µM); SMT (4.2 µM) | [56] | |
310 | euphorin E | Stems, MeOH | Inhibitory (NO production in BV-2; IC50 = 40.70 µM), SMT (4.2 µM) | [56] | |
Meroterpenoid | |||||
311 | E. fischeriana | fischernolide A | Roots, EtOH: H2O (95:5) | Cytotoxic (Bel-7402; IC50 = 27.30, HT; IC50 = 49.61 µM, A549; IC50 = 20.53 µM, MCF-7; IC50 = 33.70 µM, HeLa; IC50 = 35.65 µM) compared to cisplatin; 11.9, 33.48, 12.02, 12.78, 8.65 µM respectively | [30] |
312 | fischernolide B | Roots, EtOH: H2O (95:5) | Cytotoxic (Bel-7402; IC50 = 5.04 µM, HT; IC50 = 7.59 µM, A549; IC50 = 8.69 µM, MCF-7; IC50 = 4.95 µM, HeLa; IC50 = 7.53 µM) compared to cisplatin; 11.9, 33.48, 12.02, 12.78, 8.65 µM respectively | [30] | |
313 | fischernolide C | Roots, EtOH: H2O (95:5) | Cytotoxic (Bel-7402; IC50 = 3.30 µM, HT; IC50 = 4.21 µM, A549; IC50 = 3.27, µM MCF-7; IC50 = 2.04 µM, HeLa; IC50 = 4.22 µM) compared to cisplatin; 11.9, 33.48, 12.02, 12.78, 8.65 µM respectively | [30] | |
314 | fischernolide D | Roots, EtOH: H2O (95:5) | Cytotoxic (Bel-7402; IC50 = 11.96 µM, HT; IC50 = 33.48 µM, A549; IC50 = 9.57 µM, MCF-7; IC50 = 14.98 µM, HeLa; IC50 = 10.22 µM) compared to cisplatin; 11.9, 33.48, 12.02, 12.78, 8.65 µM respectively | [30] | |
315 | fischeriana A | Roots, EtOH | Not evaluated | [47] | |
Mysrinane | |||||
316 | E. prolifera | 5α,10β,14β,15β-O-tetraacetyl-8β-O-benzoyl-3β-O-nicotinoylcyclomyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] |
317 | 5α,10β,14β,15β-O-tetraacetyl-8β-O-isobutyryl-3β-O-nicotinoylcyclomyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
318 | 5α,7β,10,14β,15β-O-pentaacetyl-3β-O-butyryl-14-desoxo-10,18-dihydromyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
319 | 5α,7β,10,14β,15β-O-pentaacetyl-14-desoxo-10,18-dihydro-3β-O-propionylmyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
320 | 5α,7β,10,15β-O-tetraacetyl-3β-O-benzoyl-14-desoxo-10,18-dihydro-14α-O-nicotinoylmyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
321 | 3β,5α,7β,10,15β-O-pentaacetyl-14α-O-benzoyl-14-desoxo-10,18-dihydro-2α-hydroxylmyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
322 | 7β,13β,17-O-triacetyl-5-O-benzoyl-3β-O-nicotinoylpremyrsinol | Roots, MeOH | Lipid-lowering activity in 3T3-L1 adipocytemodel using R17 control | [37] | |
Paralianone | |||||
323 | E. peplus | 8β-acetyl- paralianone D | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM, using paclitaxel and cisplatin as control. Enhanced the LysoTracker intensity of 132.6% at 3.20 µM using DMSO as the control | [38] |
324 | paralianone | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM, using paclitaxel and cisplatin as control. | [38] | |
325 | paralianone D | Whole plant, CH3OH | Cytotoxic (HL-60, A-549, SMMC-7721, MCF-7, SW480). Inactive at 40 µM, using paclitaxel and cisplatin as control. | [38] | |
Pimarane | |||||
326 | E. stracheyi | (3β, 12α, 13α)-3, 12-dihydrxypiar-7, 15-dien-2-one | Roots, MeOH | Not evaluated | [32] |
327 | (5β, 9β, 10α)-2-hydroxypimara-1, 7, 15-trien-3-one | Roots, MeOH | Not evaluated | [32] | |
328 | (3α, 5β, 8α, 9β, 10α, 12α)-3-hydroxytis-16-en-14-one | Roots, MeOH | Not evaluated | [32] | |
Premyrsinane | |||||
329 | E. sanctae-catharinae | euphosantianane E | Aerial, CH2CI2: MeOH | Not evaluated | [26] |
330 | euphosantianane F | Aerial, CH2CI2: MeOH | Not evaluated | [26] | |
331 | euphosantianane G | Aerial, CH2CI2: MeOH | Not evaluated | [26] | |
Rosane | |||||
332 | E. ebracteolata | ebraphenol A | Roots, EtOH (n-BuOH, EtOAc) | Lipase inhibitory (IC50 = 1.00 µM) compared to lovastatin positive control; IC50 = 0.24 µM | [48] |
333 | ebraphenol B | Roots, EtOH (n-BuOH, EtOAc) | Lipase inhibitory (IC50 = 0.24 µM) compared to lovastatin positive control; IC50 = 0.24 µM | [48] | |
334 | ebraphenol C | Roots, EtOH (n-BuOH, EtOAc) | Lipase inhibitory (IC50 = 0.24 µM) compared to lovastatin positive control; IC50 = 0.24 µM | [48] | |
335 | ebraphenol D | Roots, EtOH (n-BuOH, EtOAc) | Lipase inhibitory (IC50 = 0.24 µM) compared to lovastatin positive control; IC50 = 0.24 µM | [48] | |
336 | ebralactone A | Roots, EtOH (n-BuOH, EtOAc) | Lipase inhibitory (IC50 = 0.24 µM) compared to lovastatin positive control; IC50 = 0.24 µM | [48] | |
337 | E. neriifolia | euphnerin A | Stems, MeOH | NO inhibitory (BV-2, IC50 = 22.00 µM) compared to SMT positive control 2.00 µM | [71] |
338 | euphnerin B | Stems, MeOH | NO inhibitory (BV-2, IC50 = 30.00 µM) compared to SMT positive control 2.00 µM | [71] | |
Tigliane | |||||
339 | E. fischeriana | prostratin 20-O-(6′-acetate)-β-D-glucopyranoside | Roots, EtOH | Cytotoxic (AGS; IC50 = 40.56 µM, Hep-G2; IC50 = 27.97 µM) compared to oxaliplatin; IC50 of 17.06 and 24.26 µM respectively | [63] |
340 | fischeroside A | Roots, EtOH | Cytotoxic (AGS; IC50 = 27.97 µM, Hep-G2; IC50 = 17.59 µM) compared to oxaliplatin; IC50 of 17.06 and 24.26 µM respectively | [63] | |
341 | 12-deoxyphorbol-13-dimethylpentadecanoate | Roots, MeOH | Lysosomal biogenesis activity (183.21%) using blank control | [102] | |
342 | 17-hydroxy,11α, 8(14) epoxy-ent-abieta-13(15)-ene-11,12-dioxide | Roots, MeOH | Lysosomal biogenesis activity (181.95%) using blank control | [102] | |
343 | E. lathyris | eupholathone | Seeds, EtOH | Not evaluated | [66] |
344 | E. grandicornis | 16-angeloyloxy-13α -isobutanoyloxy-4β, 9α-dihydroxytiglia-1, 6- dien-3-one. | Aerial, MeOH | Protein kinase C activation and platelet stimulation abilities | [52] |
345 | 20-acetoxy-13α-isobutanoyloxy-4β, 9α, 16-trihydroxytiglia-1, 6-dien-3-one. | Aerial, MeOH | Protein kinase C activation and platelet stimulation abilities | [52] | |
346 | E. dracunculoides | 4-deoxy-4(β)H-8-hydroperoxyphorbol-12-benzoate-13-isobutyrate | Whole plant, EtOH | Not evaluated | [57] |
Myrsinol | |||||
347 | E. prolifera | euphorbialoid K | Roots, MeOH | Not evaluated | [74] |
348 | euphorbialoid L | Roots, MeOH | Not evaluated | [74] | |
349 | euphorbialoid M | Roots, MeOH | Not evaluated | [74] | |
350 | euphorbialoid N | Roots, MeOH | Not evaluated | [74] | |
351 | E. dracunculoides | euphordracunculin A | Aerial, EtOH | Cytotoxic (HL-60, SMMMC-7721, A-549, MCF-7, SW-480); Inactive (IC50 > 40 µM) | [107] |
352 | euphordracunculin B | Aerial, EtOH | Cytotoxic (HL-60, SMMMC-7721, A-549, MCF-7, SW-480); Inactive (IC50 > 40 µM) | [107] | |
Paraliane | |||||
353 | E. esula | euphorbesulin D | Twigs, EtOH | Antimalarial (IC50 > 50 µM) compared to artemisinin (7.01 µM) as a positive control | [49] |
354 | E. peplus | pepluanol A | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] |
355 | pepluanol B | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
356 | pepluanol C | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
357 | pepluanol D | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
358 | pepluanol E | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
359 | pepluanol F | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
360 | pepluanol G | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 = 36.6 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
361 | pepluanol H | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
Pepluane | |||||
362 | E. peplus | paralianone A | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 = 43.2 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] |
363 | paralianone B | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 > 50 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
364 | paralianone C | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 = 33.7 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
365 | paralianone D | Whole plant, C3H6O | Inhibition of LPS-stimulated NO production in RAW264.7 cells (IC50 = 38.3 µM) compared to proteasome inhibitor (MG-132) with IC50 of 0.18 µM | [72] | |
Presegetane | |||||
366 | E. esula | euphorbesulin A | Twigs, EtOH | Antimalarial (IC50 = 2.41 µM) compared to artemisinin (7.01 µM) as a positive control | [49] |
367 | euphorbesulin B | Twigs, EtOH | Antimalarial (IC50 > 5 µM) compared to artemisinin (7.01 µM) as a positive control | [49] | |
368 | euphorbesulin C | Twigs, EtOH | Antimalarial (IC50 > 5 µM) compared to artemisinin (7.01 µM) as a positive control | [49] | |
Others | |||||
369 | E. aellenii | 3-nicotinyl-5,10,14,15- tetraacetyl-8-(20,30-dimethyl butanoyl)-cyclomyrsinol | Aerial, C3H6O: CHCl3 (1:2) | Lymphocytes proliferative effects (p > 0.05, at 50 µg/mL) using stimulated and unstimulated T cells in absence of the compound as the control | [39] |
370 | 3,5,10,14,15-pentaacetyl-8-isobutanoyl cyclomyrsinol | Aerial, C3H6O: CHCl3 (1:2) | Lymphocytes proliferative effects (p > 0.05, at 50 µg/mL) using stimulated and unstimulated T cells in absence of the compound as the control | [39] | |
371 | E. pilosa | euphopiloside A | Whole plant, EtOH | Cytotoxic (HL-60, SMMMC-7721, A-549, MCF-7, SW-480); moderate activity compared to cisplatin with IC50 values of 3.29, 9.26, 9.98, 15.92 and 14.43 µM respectively | [40] |
372 | euphopiloside B | Whole plant, EtOH | Cytotoxic (HL-60, SMMMC-7721, A-549, MCF-7, SW-480); moderate activity compared to cisplatin with IC50 values of 3.29, 9.26, 9.98, 15.92 and 14.43 µM respectively | [40] | |
373 | E. kansui | euphorikanin A | Roots, EtOH | Cytotoxic effect (HeLa; IC50 = 20.89 µM, NCI-446; 28.83 µM compared to etoposide (IC50 of 26.23 and 30.68 µM respectively) | [53] |
374 | E. esula | euphorbesulin E | Twigs, EtOH | Antimalarial (IC50 > 50 µM) compared to artemisinin (7.01 µM) as a positive control | [49] |
375 | E. dracunculoides | euphordracunculin C | Aerial, C3H6O: H2O (7:3) | Not evaluated | [107] |
376 | E. peplus | pepluacetal | Roots, MeOH | Inhibition of Kv1.3 channel with IC50 value of 24.9 µM | [72] |
377 | pepluanol A | Roots, MeOH | Inhibition of Kv1.3 channel with IC50 value of 46.0 µM | [72] | |
378 | pepluanol B | Roots, MeOH | Inhibition of Kv1.3 channel with IC50 value of 9.50 µM | [72] | |
379 | E. micractina | secoeuphoractin | Roots, EtOH | Anti-HIV-1 replication ability (IC50 = 1.76 µmol/L) compared to zidovudine (0.005 µmol/L) as positive control | [67] |
380 | euphorbactin | Roots, EtOH | Anti-HIV-1 replication ability (IC50 = 28.6 µM) compared to zidovudine (0.005 µM) as positive control | [104] | |
381 | E. kopetdaghi | kopetdaghinane A | Aerial, CH2CI2: C3H6O (2:1) | Cytotoxic (MCF-7; IC50 = 38.10 µM, OCVAR-3; IC50 = 51.23 µM) compared to taxol (44.61 and 52.3 µM respectively) | [25] |
382 | kopetdaghinane B | Aerial, CH2CI2: C3H6O (2:1) | Cytotoxic (MCF-7; IC50 =38.10 µM, OCVAR-3; IC50 = 51.23 µM) compared to taxol (44.61 and 52.3 µM respectively) | [25] |
6. Pharmacological Activities and Structure–Activity Relationship (SAR)
6.1. Anticancer Activities
6.2. Multidrug Resistance Activities
6.3. Inhibition Activities
6.4. Anti-HIV Activities
6.5. Anti-Influenza
6.6. Melanin Synthesis
6.7. Antibacterial and Antimalarial Activities
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Arachidonic acid |
A-549 | Human lung cancer cells |
AGS | Human gastric cancer cell lines |
BaF3 | Human murine cell line lymphocyte |
BMM | Osteoclastogenesis cells |
C4-2B | Human prostate cancer |
C4-2B/ENZR | Enzalutamide-resistant C4-2B cell line |
DU145 | Human prostate cancer cells |
GGPP | Geranyl geranyl pyrophosphate |
H460 | Human lung carcinoma |
Hep-G2 | Human liver cancer cells |
Hep-G2/ADR | Hepatocellular carcinoma |
HGC-27 | Human stomach cancer cell lines |
HL-60 | Human leukemia cells |
MDA-MB-231 | Human breast cancer cells |
MDCK | Madin-Darby canine kidney cells |
MV4-11 | Human leukemia cells |
RANKL | Receptor activator of nuclear factor kappa B ligand |
RAW264.7 | Macrophages cells |
Skvo3 | Human ovarian carcinoma |
SMMC-7721 | Liver cancer cells |
SW480 | Colon cancer cells |
References
- De Montellano, B.O. Empirical Aztec medicine. Science 1975, 188, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Hooper, M. Major Herbs of Ayurveda; Elsevier Health Sciences, Elsevier: Amsterdam, The Netherlands, 2002; pp. 340–345. [Google Scholar]
- Hargreaves, B.J. The spurges of Botswana. Botsw. Notes Rec. 1991, 23, 115–158. [Google Scholar]
- Lai, X.Z.; Yang, Y.B.; Shan, X.U.L. The investigation of Euphorbiaceus medicinal plants in Southern China. Econ. Bot. 2004, 58, S307–S320. [Google Scholar] [CrossRef]
- Ernst, M.; Grace, O.M.; Saslis-Lagoudakis, C.H.; Haris, S.L.; Niclas, N.; Henrik, T.; Nina, R. Global medicinal uses of Euphorbia L. (Euphorbiaceae). J. Ethnopharmacol. 2015, 76, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Mwine, J.; Van Damme, P. Why do Euphorbiaceae tick as medicinal plants? A review of the Euphorbiaceae family and its medicinal features. J. Med. Plant. Res. 2011, 5, 652–662. [Google Scholar]
- Zeghad, F.; Djilani, S.E.; Djilani, A.; Dicko, A. Antimicrobial and antioxidant activities of three Euphorbia species. Turk. J. Pharm. Sci. 2016, 13, 47–56. [Google Scholar] [CrossRef]
- Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Diterpenes from European Euphorbia species serving as prototypes for natural-product-based drug discovery. Eur. J. Org. Chem. 2012, 5115–5130. [Google Scholar] [CrossRef]
- Vasas, A.; Hohmann, J. Euphorbia diterpenes: Isolation, structure, biological activity, and synthesis (2008−2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.T.; Mata, O.; Aguiar, R.S.; Paz, M.C.J.; Alencar, M.B.; Melo-cavalcante, A.C. Therapeutic potential of essential oils focusing on diterpenes. Phytother. Res. 2016, 30, 1420–1444. [Google Scholar] [CrossRef]
- Scholz, A. Euphorbiaceae. In Syllabus der Planzenfamilien; Engler, A., Ed.; Gebrüder Bornträger: Berlin, Germany, 1964; pp. 255–261. [Google Scholar]
- Webster, G.L. Classification of the Euphorbiaceae. Ann. Mol. Bot. Gar. 1994, 81, 3–32. [Google Scholar] [CrossRef]
- Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef]
- Jin, Y.X.; Shi, L.L.; Zhang, D.P.; Wei, H.Y.; Si, Y.; Ma, G.X.; Zhang, J. A review on daphnane-type diterpenoids and their bioactive studies. Molecules 2019, 24, 1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jury, L.; Reynolds, T.; Cutler, F.; Evans, F. The Euphorbiales: Chemistry, Taxonomy, and Economic Botany; Academic Press: London, UK, 1987. [Google Scholar]
- Gras, J. Ingenol mebutate: A new option for actinic keratosis treatment. Drugs Today 2013, 49, 15–22. [Google Scholar] [CrossRef]
- Hanson, J.R. Diterpenoids: Methods in Plant Biochemistry; Charlwood, B.V., Banthorpe, D.V., Eds.; Academic Press: London, UK, 1991; pp. 263–288. [Google Scholar]
- Cheng, A.; Lou, Y.; Mao, Y.; Lu, S.; Wang, L.; Chen, X. Plant terpenoids: Biosynthesis and ecological functions. J. Integr. Plant. Biol. 2007, 49, 179–186. [Google Scholar] [CrossRef]
- Dewick, M. Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; ISBN 978-0-470-74168-9. [Google Scholar]
- Goel, G.; Makkar, S.; Francis, G.; Becker, K. Phorbol esters: Structure, biological activity, and toxicity in animals. Int. J. Toxicol. 2007, 26, 279. [Google Scholar] [CrossRef]
- Wang, H.B.; Wang, X.Y.; Liu, L.P.; Qin, G.W.; Kang, T.G. Tigliane Diterpenoids from the Euphorbiaceae and Thymelaeaceae Families. Chem. Rev. 2015, 115, 2975–3011. [Google Scholar] [CrossRef]
- Wongrakpanich, W.; Purin, C. Induction of apoptosis in cancer cells by plants in the genus Euphorbia. Thai Bull. Pharm. Sci. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Salehi, B.; Iriti, M.; Vitalini, S.; Antolak, H.; Pawlikowska, E.; Kręgiel, D.; Sharifi-Rad, J.; Oyeleye, I.; Ademiluyi, O.; Czopek, K.; et al. Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules 2019, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Kemboi, D.; Peter, X.; Langat, M.; Tembu, J. A review of the ethnomedicinal uses, biological activities, and Triterpenoids of Euphorbia Species. Molecules 2020, 25, 4019. [Google Scholar] [CrossRef] [PubMed]
- Riahi, F.; Dashti, N.; Ghanadian, M.; Aghaei, M.; Faez, F.; Jafari, S.M.; Zargar, N. Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from Euphorbia kopetdaghi. Fitoterapia 2020, 146, 104636. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Mohamed, T.A.; Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Dar, B.A.; Shahat, A.A.; Hegazy, M.E.F. Euphosantianane E-G: Three new premyrsinane type diterpenoids from Euphorbia sanctae-catharinae with the contribution to chemotaxonomy. Molecules 2019, 24, 2412. [Google Scholar] [CrossRef] [Green Version]
- Flores-Giubi, M.E.; Durán-Pena, M.J.; Botubol-Ares, J.M.; Escobar-Montano, F.; Zorrilla, D.; Macías-Sánchez, A.J.; Hernández-Galán, R. Gaditanone, a diterpenoid based on an unprecedented carbon skeleton isolated from Euphorbia gaditana. J. Nat. Prod. 2017, 80, 2161–2165. [Google Scholar] [CrossRef] [Green Version]
- Bin Muhsinah, A.; Eko Nugroho, A.; Li, H.; Lazzaro, S.; DaSilva, N.A.; Li, D.; Ma, H.; Alsayari, A.; Morita, H.; Liu, Y.; et al. Saudiarabicains A-E, bioactive 19-acetoxyingol diterpenoids from Euphorbia saudiarabica. Tetrahedron Lett. 2020, 61, 152203. [Google Scholar] [CrossRef]
- Hasan, A.; Liu, G.Y.; Hu, R.; Aisa, H.A. Jatrophane Diterpenoids from Euphorbia glomerulans. J. Nat. Prod. 2019, 82, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, J.; Cheng, Y.C.; Zhang, P.C.; Yan, Y.; Zhang, H.J.; Zhang, W.K.; Xu, J.K. Fischernolides A-D, four novel diterpene-based meroterpenoid scaffolds with antitumor activities from: Euphorbia fischeriana. Org. Chem. Front. 2019, 6, 2312–2318. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Liu, D.; Zhao, Q.; Yang, T.; Li, R.; Chen, X. Diterpenoids from the Seeds of Euphorbia lathyris and their in Vitro Anti-HIV Activity. Chem. Nat. Compd. 2020, 56, 78–85. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, G.H.; Dawa, D.; Ding, L.S.; Cao, Z.X.; Zhou, Y. Cytotoxic diterpenoids from the roots of Euphorbia stracheyi. Phytochem. Lett. 2020, 36, 183–187. [Google Scholar] [CrossRef]
- Shaker, S.; Sang, J.; Yan, X.L.; Fan, R.Z.; Tang, G.H.; Xu, Y.K.; Yin, S. Diterpenoids from Euphorbia royleana reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Phytochemistry 2020, 176, 112395. [Google Scholar] [CrossRef]
- Yuan, W.J.; Gao, W.F.; Zhao, J.Y.; Zhang, Y.; Chen, D.Z.; Li, S.L.; Di, Y.T.; Hao, X.J. Diterpenes with the potential treatment of vitiligo from the aerials parts of Euphorbia antiquorum L. Fitoterapia 2020, 144, 104583. [Google Scholar] [CrossRef]
- Yan, X.L.; Fan, R.Z.; Sang, J.; Xie, X.L.; Tang, G.H.; Yin, S. Euphanoids A, and B, two new lathyrane diterpenoids with nitric oxide (NO) inhibitory activity from Euphorbia kansuensis. Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef]
- Yan, X.L.; Sang, J.; Chen, S.X.; Li, W.; Tang, G.H.; Gan, L.S.; Yin, S. Euphorkanlide A, a highly modified ingenane diterpenoid with a C24 appendage from Euphorbia kansuensis. Org. Lett. 2019, 21, 4128–4131. [Google Scholar] [CrossRef]
- Song, Q.Q.; Rao, Y.; Tang, G.H.; Sun, Z.H.; Zhang, J.S.; Huang, Z.S.; Yin, S. Tigliane diterpenoids as a new type of antiadipogenic agents inhibit GRα-Dexras1 axis in adipocytes. J. Med. Chem. 2019, 62, 2060–2075. [Google Scholar] [CrossRef]
- Chen, Y.N.; Lu, Q.Y.; Li, D.M.; Li, Y.Y.; Pu, X.X.; Li, B.T.; Tang, X.H.; Tang, H.Y.; Liu, S.; Yang, L.; et al. Three new diterpenoids from Euphorbia peplus. Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ghanadian, M.; Choudhary, M.I.; Ayatollahi, A.M.; Mesaik, M.A.; Abdalla, O.M.; Afsharypour, S. New cyclomyrsinol diterpenes from Euphorbia aellenii with their immunomodulatory effects. J. Asian Nat. Prod. Res. 2013, 15, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.D.; Ni, W.; Yan, H.; Li, G.T.; Zhong, H.M.; Li, Y.; Liu, H.Y. Daphnane-type diterpenoid glucosides and further constituents of Euphorbia pilosa. Chem. Biodivers. 2014, 11, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, R.Z.; Sang, J.; Tian, Y.J.; Chen, J.Q.; Tang, G.H.; Yin, S. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorg. Chem. 2020, 95, 103546. [Google Scholar] [CrossRef]
- Yan, S.L.; Li, Y.H.; Chen, X.Q.; Liu, D.; Chen, C.H.; Li, R.T. Diterpenes from the stem bark of Euphorbia neriifolia and their in vitro anti-HIV activity. Phytochemistry 2018, 145, 40–47. [Google Scholar] [CrossRef]
- Wang, S.Y.; Li, G.Y.; Zhang, K.; Wang, H.Y.; Liang, H.G.; Huang, C.; Huang, J.; Wang, J.H.; Yang, B.F. New ingol-type diterpenes from the latex of Euphorbia resinifera. J. Asian Nat. Prod. Res. 2019, 21, 1075–1082. [Google Scholar] [CrossRef]
- Yan, X.L.; Huang, J.L.; Tang, Y.Q.; Tang, G.H.; Yin, S. Euphopanes A–C, three new diterpenoids from Euphorbia pekinensis. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Wei, W.J.; Qi, W.; Gao, X.M.; Feng, K.N.; Ma, K.L.; Li, H.Y.; Li, Y.; Gao, K. Anti-inflammatory evaluation and structure-activity relationships of diterpenoids isolated from Euphorbia hylonoma. Bioorg. Chem. 2019, 93, 103256. [Google Scholar] [CrossRef]
- Liu, S.N.; Hu, J.; Tan, S.H.; Wang, Q.; Xu, J.; Wang, Y.; Yuan, Y.; Gu, Q. Ent -rosane diterpenoids from Euphorbia milii showing an Epstein-Barr virus lytic replication assay. RSC Adv. 2017, 7, 46938–46947. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yang, P.; Zhang, E.H.; Kong, L.M.; Meng, C.Y. Antimicrobial ent-abietane-type diterpenoids from the roots of Euphorbia wallichii. J. Asian Nat. Prod. Res. 2020, 23, 652–659. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Wang, C.; Feng, L.; Yu, Z.; Ning, J.; Zhang, B.; Zhang, H.; Wang, C.; Ma, X. Aromatic rosane diterpenoids from the roots of Euphorbia ebracteolata and their inhibitory effects against lipase. Bioorg. Chem. 2020, 94, 103360. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wu, Y.; Dalal, S.; Cassera, M.B.; Yue, J.M. Euphorbesulins A-P, Structurally diverse diterpenoids from Euphorbia esula. J. Nat. Prod. 2016, 79, 1952–1961. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, Q.; He, L.; Chen, Y.H.; Zhu, B.Y.; Wang, J.H.; Yang, Q.; Liu, S.; Ma, L.M. Cytotoxic jatrophane diterpenoids from the aerial parts of Euphorbia helioscopia. J. Asian Nat. Prod. Res. 2020, 1–7. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Yin, H.X.; Zhang, D.J. Two New ent-labdane diterpenes from the roots of Euphorbia yinshanica. Chem. Nat. Compd. 2017, 53, 295–298. [Google Scholar] [CrossRef]
- Tsai, J.Y.; Rédei, D.; Forgo, P.; Li, Y.; Vasas, A.; Hohmann, J.; Wu, C.C. Isolation of phorbol esters from Euphorbia grandicornis and evaluation of protein kinase C- and human platelet-activating effects of Euphorbiaceae diterpenes. J. Nat. Prod. 2016, 79, 2658–2666. [Google Scholar] [CrossRef]
- Fei, D.Q.; Le Dong, L.; Qi, F.M.; Fan, G.X.; Li, H.H.; Li, Z.Y.; Zhang, Z.X. Euphorikanin A, a diterpenoid lactone with a fused 5/6/7/3 ring system from Euphorbia kansui. Org. Lett. 2016, 18, 2844–2847. [Google Scholar] [CrossRef]
- Tran, T.N.; Sichaem, J.; Nguyen, V.K.; Nguyen, H.H.; Cao, T.T.; Nguyen, T.P.; Vo, V.G.; Niamnont, N.; Nguyen, N.H.; Duong, T.H. New diterpenoids from the stems of Euphorbia antiquorum growing in Vietnam. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Tran, T.N.; Sichaem, J.; Nguyen, V.K.; Chavasiri, W.; Niamnont, N.; Jongaramruong, J.; Duong, T.H. A new ent-atisane diterpenoid from the aerial parts of Euphorbia antiquorum L. Nat. Prod. Res. 2021, 35, 312–317. [Google Scholar] [CrossRef]
- An, L.; Liang, Y.; Yang, X.; Wang, H.; Zhang, J.; Tuerhong, M.; Li, D.; Wang, C.; Lee, D.; Xu, J.; et al. NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquoru. Bioorg. Chem. 2019, 92, 103237. [Google Scholar] [CrossRef]
- Dai, L.F.; Liang, Q.; Liu, T.; He, M.Y.; Zhao, P.; Xu, W.H. A new tigliane-type diterpene from Euphorbia dracunculoides Lam. Nat. Prod. Res. 2016, 30, 1639–1645. [Google Scholar] [CrossRef]
- Wang, L.; Zang, Z.; Wang, Y.F.; Huang, S.X.; Cao, P.; Zhao, Y. Two new myrinsol diterpenoids from Euphorbia dracunculoides Lam. Chin. Chem. Lett. 2015, 26, 121–123. [Google Scholar] [CrossRef]
- Xie, X.L.; Fan, R.Z.; Hu, R.; Luo, S.Y.; Tang, G.H.; Yin, S. Euphoresulanes A–M, structurally diverse jatrophane diterpenoids from Euphorbia esula. Bioorg. Chem. 2020, 98, 103763. [Google Scholar] [CrossRef]
- Xie, R.; Li, L.; Fan, X.; Zi, J. Euphoractone, a cytotoxic meroterpenoid with an unusual ent-abietane-phloroglucinol skeleton, from Euphorbia fischeriana Steud. Chin. Chem. Lett. 2020, 31, 431–433. [Google Scholar] [CrossRef]
- Li, M.; He, F.; Zhou, Y.; Wang, M.; Tao, P.; Tu, Q.; Lv, G.; Chen, X. Three new ent-abietane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxicity in human tumor cell lines. Arch. Pharm. Res. 2019, 42, 512–518. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, J.K.; Zhang, J.; Bai, H.J.; Ma, B.Z.; Cheng, Y.C.; Zhang, W.K. Fischeriana A, a meroterpenoid with an unusual 6/6/5/5/5/6/6 heptacyclic carbon skeleton from the roots of Euphorbia fischeriana. Org. Biomol. Chem. 2019, 17, 2721–2724. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Yang, X.; Li, J.; Meng, D. Antiproliferative diterpenoids and acetophenone glycoside from the roots of Euphorbia fischeriana. Phytochemistry 2020, 177, 112437. [Google Scholar] [CrossRef]
- Su, J.C.; Cheng, W.; Song, J.G.; Zhong, Y.L.; Huang, X.J.; Jiang, R.W.; Li, Y.L.; Li, M.M.; Ye, W.C.; Wang, Y. Macrocyclic diterpenoids from Euphorbia helioscopia and their potential anti-inflammatory activity. J. Nat. Prod. 2019, 82, 2818–2827. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.H.; Wang, K.; Chai, T.; Guo, Z.Y.; Zhao, M.; Yang, J.L. Ingenane and jatrophane diterpenoids from Euphorbia kansui and their antiproliferative effects. Phytochemistry 2020, 172, 112257. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.F.; Zhang, Y.; Zhang, X.; Chen, M.J.; Zhan, Z.J.; Shan, W.G. A new tetracyclic diterpenoid from the seeds of Euphorbia lathyris. J. Chem. Res. 2020, 44, 322–325. [Google Scholar] [CrossRef]
- Xu, W.D.; Tian, Y.; Guo, Q.L.; Yang, Y.C.; Shi, J.G. Secoeuphoractin, a minor diterpenoid with a new skeleton from Euphorbia micractina. Chin. Chem. Lett. 2014, 25, 1531–1534. [Google Scholar] [CrossRef]
- Qi, W.Y.; Gao, X.M.; Ma, Z.Y.; Xia, C.L.; Xu, H.M. Antiangiogenic activity of terpenoids from Euphorbia neriifolia Linn. Bioorg. Chem. 2020, 96, 103536. [Google Scholar] [CrossRef]
- Li, J.C.; Feng, X.Y.; Liu, D.; Zhang, Z.J.; Chen, X.Q.; Li, R.T.; Li, H.M. Diterpenoids from Euphorbia neriifolia and their related anti-HIV and cytotoxic activity. Chem. Biodivers. 2019, 16, 2–8. [Google Scholar] [CrossRef]
- Li, J.C.; Zhang, Z.J.; Yang, T.; Jiang, M.Y.; Liu, D.; Li, H.M.; Li, R.T. Six new ent-abietane-type diterpenoids from the stem bark of Euphorbia neriifolia. Phytochem. Lett. 2019, 34, 13–17. [Google Scholar] [CrossRef]
- Du, M.; An, L.; Xu, J.; Guo, Y. Euphnerins A, and B, diterpenoids with a 5/6/6 rearranged spirocyclic carbon skeleton from the stems of Euphorbia neriifolia. J. Nat. Prod. 2020, 83, 2592–2596. [Google Scholar] [CrossRef]
- Wan, L.S.; Chu, R.; Peng, X.R.; Zhu, G.L.; Yu, M.Y.; Li, L.; Zhou, L.; Lu, S.Y.; Dong, J.R.; Zhang, Z.R.; et al. Pepluane and paraliane diterpenoids from Euphorbia peplus with potential anti-inflammatory activity. J. Nat. Prod. 2016, 79, 1628–1634. [Google Scholar] [CrossRef]
- Li, J.-C.; Dai, W.-F.; Liu, D.; Jiang, M.-Y.; Zhang, Z.-J.; Chen, X.-Q.; Chen, C.-H.; Li, R.-T.; Li, H.-M. Bioactive ent-isopimarane diterpenoids from Euphorbia neriifolia. Phytochemistry 2020, 175, 112373. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yang, B.; Fang, L.; Wang, S.; Guo, Y.; Yamakuni, T.; Ohizumi, Y. Four new myrsinol diterpenes from Euphorbia prolifera. J. Nat. Med. 2013, 67, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xie, C.; An, L.; Yang, X.; Xi, Y.; Yuan, S.; Zhang, C.; Tuerhong, M.; Jin, D.Q.; Lee, D.; et al. Bioactive diterpenoids from the stems of Euphorbia royleana. J. Nat. Prod. 2019, 82, 183–193. [Google Scholar] [CrossRef]
- Demetzos, C.; Dimas, K.S. Labdane-type diterpenes: Chemistry and biological activity. Stud. Nat. Prod. Chem. 2001, 25, 235–292. [Google Scholar]
- Liu, M.; Wang, W.G.; Sun, H.D.; Pu, J.X. Diterpenoids from Isodon species: An update. Nat. Prod. Rep. 2017, 34, 1090–1140. [Google Scholar] [CrossRef]
- Wu, Q.C.; Tang, Y.P.; Ding, A.W.; You, F.Q.; Zhang, L.; Duan, J.A. 13C-NMR data of three important diterpenes isolated from Euphorbia species. Molecules 2009, 14, 4454–4475. [Google Scholar] [CrossRef] [Green Version]
- Satti, N.K.; Suri, O.P.; Dhar, K.L.; Kawasaki, T.; Miyahara, K.; Noda, N. Diterpenes from Euphorbia fidjiana. J. Nat. Prod. 1987, 50, 790. [Google Scholar] [CrossRef]
- Lal, A.R.; Cambie, R.C.; Rutledge, P.S.; Woodgate, P.D. Ent-pimarane and ent-abietane diterpenes from Euphorbia fidjiana. Phytochemistry 1990, 29, 2239–2246. [Google Scholar] [CrossRef]
- Haba, H.; Lavaud, C.; Magid, A.A.; Benkhaled, M. Diterpenoids, and triterpenoids from Euphorbia retusa. J. Nat. Prod. 2009, 72, 1258–1264. [Google Scholar] [CrossRef]
- Haba, H.; Lavaud, C.; Marcourt, L.; Long, C.; Harkat, H.; Benkhaled, M. Ent-abietane diterpenoids from Euphorbia guyoniana Boiss. & Reut. Biochem. Syst. Ecol. 2009, 37, 504. [Google Scholar]
- Yu, C.C.; Hsieh, C.R.; Hsiao, G.; Chen, P.Y.; Chang, M.L.; Yin, H.W.; Lee, T.H.; Lee, C.K. Regulated expressions of MMP-2, -9 by diterpenoids from Euphorbia formosana hayata. Molecules 2012, 17, 2082–2090. [Google Scholar] [CrossRef] [Green Version]
- Geris, R.; Simpson, T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep. 2009, 26, 1063–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloch, I.B.; Baloch, M.K.; Baloch, A.K. Schistosomiasis suppressing deoxyphorbol esters from Euphorbia cauducifolia L. Latex. Planta Med. 2010, 76, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Latif, A.; Ali, M.; Zhang, G.P.; Xiang, W.J.; Ma, L.; Arfan, M.; Hu, L.H. Diterpenoids from Euphorbia neriifolia. Phytochemistry 2012, 75, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Satti, N.K.; Suri, O.P.; Thaper, R.K.; Kachroo, P.L. Ent-atisane-3β, 16α, 17-triol, a diterpene from E. acaulis. Phytochemistry 1988, 27, 1530. [Google Scholar] [CrossRef]
- Mbwambo, Z.H.; Lee, S.K.; Mshiu, E.N.; Pezzuto, J.M.; Kinghorn, A.D. Constituents from the stem wood of Euphorbia quinquecostata with phorbol dibutyrate receptor-binding inhibitory activity. J. Nat. Prod. 1996, 16, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Drummond, G.J.; Grant, P.S.; Brimble, M.A. ent-atisane diterpenoids: Isolation, structure, and bioactivity. Nat. Prod. Rep. 2020. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhou, Y.; Peng, S.; Zhou, D.; Ding, L. Two new diterpenes from Euphorbia kansuensis. Fitoterapia 2008, 79, 262. [Google Scholar] [CrossRef]
- Li, X.L.; Li, Y.; Wang, S.F.; Zhao, Y.L.; Liu, K.C.; Wang, X.M.; Yang, Y.P. Ingol and ingenol diterpenes from the aerial parts of Euphorbia royleana and their antiangiogenic activities. J. Nat. Prod. 2009, 72, 1001–1005. [Google Scholar] [CrossRef]
- Liang, Q.L.; Dai, C.C.; Jiang, J.H.; Tang, Y.P.; Duan, J.A. A new cytotoxic casbane diterpene from Euphorbia pekinensis. Fitoterapia 2009, 80, 514–516. [Google Scholar] [CrossRef]
- Su, B.N.; Park, E.J.; Mbwambo, Z.H.; Santarsiero, B.D.; Mesecar, A.D.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. New chemical constituents of Euphorbia quinquecostata and absolute configuration assignment by a convenient Mosher ester procedure carried out in NMR tubes. J. Nat. Prod. 2002, 65, 1278. [Google Scholar] [CrossRef]
- Appendino, G.; Belloro, E.; Tron, G.S.C.; Jakupovic, J.; Ballero, M. Pentacyclic diterpenoids from Euphorbia characias. Fitoterapia 2002, 71, 134. [Google Scholar] [CrossRef]
- Tran, Q.T.N.; Wong, W.S.F.; Chai, C.L.L. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol. Res. 2017, 124, 43–63. [Google Scholar] [CrossRef]
- Kubo, I.; Xu, Y.; Shimizu, K. Antibacterial Activity of ent-kaurene diterpenoids from Rabdosia rosthornii. Phyther. Res. 2004, 18, 180–183. [Google Scholar] [CrossRef]
- Kusumoto, N.; Ashitani, T.; Murayama, T.; Ogiyama, K.; Takahashi, K. Antifungal abietane-type diterpenes from the cones of Taxodium distichum Rich. J. Chem. Ecol. 2010, 36, 1381–1386. [Google Scholar] [CrossRef]
- Schmid, T.R.J. The biosynthesis of tigliane and related diterpenoids; an intriguing problem. J. Linn. Soc. Bot. 1987, 94, 221–230. [Google Scholar] [CrossRef]
- Li, W.; Tang, Y.Q.; Chen, S.X.; Tang, G.H.; Gan, L.S.; Li, C.; Rao, Y.; Huang, Z.S.; Yin, S. Euphorhelipanes A, and B, triglyceride-lowering euphorbia diterpenoids with a bicycle [4.3.0] nonane core from Euphorbia helioscopia. J. Nat. Prod. 2019, 82, 412–416. [Google Scholar] [CrossRef]
- Yuan, S.; Hua, P.; Zhao, C.; Zhou, H.; Xu, J.; Xu, J.; Gu, Q. Jatrophane diterpenoids from Euphorbia esula as inhibitors of RANKL-induced osteoclastogenesis. J. Nat. Prod. 2020, 83, 1005–1017. [Google Scholar] [CrossRef]
- Devappa, R.K.; Makkar, H.P.S.; Becker, K. Jatropha diterpenes: A review, JAOCS, J. Am. Oil Chem. Soc. 2011, 88, 301–322. [Google Scholar] [CrossRef]
- Adelakun, T.A.; Ding, X.; Ombati, R.M.; Zhao, N.D.; Obodozie-Ofoegbu, O.O.; Di, Y.T.; Zhang, Y.; Hao, X.J. A new highly oxygenated abietane diterpenoid and a new lysosome generating phorbol ester from the roots of Euphorbia fischeriana Steud. Nat. Prod. Res. 2020, 34, 3027–3035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Wu, Y.L.; Zhang, P.; Chen, Z.Z.; Li, H.; Chen, L.X. Anti-inflammatory lathyrane diterpenoids from Euphorbia lathyris. J. Nat. Prod. 2019, 82, 756–764. [Google Scholar] [CrossRef]
- Tian, Y.; Guo, Q.; Xu, W.; Zhu, C.; Yang, Y.; Shi, J. A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia micractina. Org. Lett. 2014, 16, 3950–3953. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Li, C.; Yang, Y.; Li, X.; Li, H.; Chen, L. Synthesis of new lathyrane diterpenoid derivatives from Euphorbia lathyris and evaluation of their anti-inflammatory activities. Chem. Biodivers. 2020, 17, e1900531. [Google Scholar] [CrossRef]
- Yang, T.; Wang, S.; Li, H.; Zhao, Q.; Yan, S.; Dong, M.; Liu, D.; Chen, X.; Li, R. Lathyrane diterpenes from Euphorbia lathyris and the potential mechanism to reverse the multi-drug resistance in HepG2/ADR cells. Biomed. Pharmacother. 2020, 121, 109663. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.T.; Sun, Q.Y.; Zang, Z.; Yang, F.M.; Liu, J.P.; Jiang, J.H.; Huang, S.X.; Zhao, Y. A new lathyrane diterpenoid ester from Euphorbia dracunculoides. Chem. Nat. Compd. 2016, 52, 1037–1040. [Google Scholar] [CrossRef]
- Aleksandrov, M.; Maksimova, V.; Koleva Gudeva, L. Review of the anticancer and cytotoxic activity of some species from genus Euphorbia. Agric. Conspec. Sci. 2019, 84, 1–5. [Google Scholar]
- Yan, S.S.; Li, Y.; Wang, Y.; Shen, S.S.; Gu, Y.; Wang, H.B.; Qin, G.W.; Yu, Q. 17-acetoxyjolkinolide B irreversibly inhibits IkappaB kinase and induces apoptosis of tumor cells. Mol. Cancer Ther. 2008, 7, 1523–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baloch, I.B.; Baloch, M.K.; Saqib, Q.N. Tumor-promoting diterpene esters from the latex of Euphorbia cauducifolia L. Helv. Chim. Acta 2005, 88, 3145–3150. [Google Scholar] [CrossRef]
- Kulig, J.; Sehl, T.; Mackfeld, U.; Wiechert, W.; Pohl, M.; Rother, D. An enzymatic 2-step cofactor and co-product recycling cascade towards a chiral 1,2-diol. Part I: Cascade design. Adv. Synth. Catal. 2019, 361, 2607–2615. [Google Scholar] [CrossRef]
- Krstić, G.; Jadranin, M.; Stanković, M.; Aljančić, I.; Vujisić, L.; Mandić, B.; Tešević, V. Jatrophane diterpenoids with a protective effect on human lymphocytes DNA. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Zolfaghari, B.; Yazdiniapour, Z.; Ghanadian, M.; Lanzotti, V. Cyclomyrsinane and premyrsinane diterpenes from Euphorbia sogdiana Popov. Tetrahedron 2016, 72, 5394–5401. [Google Scholar] [CrossRef]
- Corea, G.; Di Pietro, A.; Dumontet, C.; Fattorusso, E.; Lanzotti, V. Jatrophane diterpenes from Euphorbia spp. as modulators of multidrug resistance in cancer therapy. Phytochem. Rev. 2009, 8, 431–447. [Google Scholar] [CrossRef]
- Barile, E.; Gabriella, C.; Virginia, L. Diterpenes from Euphorbia as potential leads for drug design. Nat. Prod. Commun. 2008, 6, 1005. [Google Scholar] [CrossRef] [Green Version]
- Bani, S.; Kaul, A.; Jaggi, B.S.; Suri, K.A.; Suri, O.P.; Sharma, O.P. Anti-inflammatory activity of the hydrosoluble fraction of Euphorbia royleana latex. Fitoterapia 2000, 71, 655–662. [Google Scholar] [CrossRef]
- Wang, B.; Wei, Y.; Zhao, X.; Tian, X.; Ning, J.; Zhang, B.; Deng, S.; Li, D.; Ma, X.; Wang, C. Unusual ent-atisane type diterpenoids with 2-oxopropyl skeleton from the roots of Euphorbia ebracteolata and their antiviral activity against human rhinovirus 3 and enterovirus. Bioorg. Chem. 2018, 81, 234–240. [Google Scholar] [CrossRef] [PubMed]
Species Name | Class (n = Number of Isolated Compounds) | Biological Study | Reference |
---|---|---|---|
E. aellenii | jatrophane (n = 2) | Antiproliferative | [39] |
E. antiquorum | ent-abietane n = 1), ent-atisane (n = 7), ingenol (n = 1), ingol (n = 16), ingol (n = 4), lathyrane (n = 3) | Melanin synthesis activity, inhibitory (α-glucosidase), inhibitory (NO production) | [34,54,55,56] |
E. dracunculoides | tigliane (n = 1), myrsinol (n = 2) | Cytotoxic | [57,58] |
E. ebracteolata | rosane (n = 5) | Lipase inhibitory | [48] |
E. esula | jatrophane (n = 41) | Antimalarial | [34,59] |
E. fischeriana | ent-abietane (n = 4), meroterpenoid (n = 5), tigliane (n = 5) | Cytotoxic | [30,60,61,62,63] |
E. gaditana | gaditanone (n = 1) | Not evaluated | [27] |
E. glomerulans | jatrophane (n = 17) | MDR-chemoreversal | [29] |
E. grandicornis | tigliane (n = 2) | Protein kinase C activation and platelet stimulation abilities | [52] |
E. helioscopia | jatrophane (n = 10) | Cytotoxic, inhibitory (nitric oxide (NO) | [50,64] |
E. hylonoma | ent-isopimarane (n = 9), ent-rosane (n = 1) | Inhibitory (NO) | [45] |
E. kansuensis | atisane (n = 1), ent-atisane (n = 1), ent-labdane (n = 2), ingenane (n = 1), kaurane (n = 1) | Cytotoxic, inhibition of NO | [35,36] |
E. kansui | ingenane (n = 15), jatrophane (n = 8) | Cytotoxic effect, antiproliferative | [53,65] |
E. kopetdaghi | Other | Cytotoxic | [25] |
E. lathyris | ingenane (n = 1), lathyrane (n = 8), tigliane (n = 1) | Inhibitory of NO | [31,66] |
E. marginata | ingol (n = 20), | Multidrug reversal activity | [41] |
E. micractina | jatrophane (n = 2) | Anti-HIV-1 replication ability | [67] |
E. milii | ent-rosane (n = 16) | Inhibitory (anti-EBV lytic replication | [46] |
E.neriifolia | abietane n = 2), ent-abietane (n = 9), ent-isopimarane (n = 12), ent-rosane (n = 1), ingol (n = 5), rosane (n = 2) | Anti-HIV-1, antiangiogenic activity, anti-influenza, NO inhibitory effects | [42,68,69,70,71,72,73] |
E. pekinensis | cembrane (n = 1), ent-abietane (n = 1), isopimarane (n = 4) | Cytotoxic | [44] |
E. peplus | abietane (n = 2), ent-abietane (n = 1), ent-labdane (n = 1), paralianone (n = 3), paraliane (n = 8), pepluane (n = 7) | Cytotoxic, inhibition of LPS-stimulated NO production | [38,72] |
E. pilosa | jatrophane (n = 2) | Cytotoxic | [40] |
E. prolifera | mysrinane (n = 7), myrsinol (n = 4) | Lipid-lowering activity | [37,74] |
E. resinifera | Ingol (n = 3), | Cytotoxic | [43] |
E. royleana | cembrane (n = 2), ent-atisane (n = 4), ent-isopimarane (n = 2), ent-kaurane (n = 3), ingenane (n = 3), ingol (n = 5), lathyrane (n = 35) | MDR-chemoreversal, chemoreversal combination abilities, inhibitory (NO production) | [33,43,75] |
E. sanctae-catharinae | premyrsinane (n = 3) | Not evaluated | [26] |
E. saudiarabica | ingol (n = 2), ingenol (n = 2) | Inhibitory (α-glucosidase) | [28] |
E. stracheyi | abietane (n = 2), ent-atisane (n = 2), ingenane (n = 4), lathyrane (n = 12), pimarane (n = 3), | Cytotoxic | [32] |
E. wallichii | ent-abietane (n = 3) | Antibacterial | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kemboi, D.; Siwe-Noundou, X.; Krause, R.W.M.; Langat, M.K.; Tembu, V.J. Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure–Activity Relationship. Molecules 2021, 26, 5055. https://doi.org/10.3390/molecules26165055
Kemboi D, Siwe-Noundou X, Krause RWM, Langat MK, Tembu VJ. Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure–Activity Relationship. Molecules. 2021; 26(16):5055. https://doi.org/10.3390/molecules26165055
Chicago/Turabian StyleKemboi, Douglas, Xavier Siwe-Noundou, Rui W. M. Krause, Moses K. Langat, and Vuyelwa Jacqueline Tembu. 2021. "Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure–Activity Relationship" Molecules 26, no. 16: 5055. https://doi.org/10.3390/molecules26165055
APA StyleKemboi, D., Siwe-Noundou, X., Krause, R. W. M., Langat, M. K., & Tembu, V. J. (2021). Euphorbia Diterpenes: An Update of Isolation, Structure, Pharmacological Activities and Structure–Activity Relationship. Molecules, 26(16), 5055. https://doi.org/10.3390/molecules26165055