Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Shea Butter Solids through Acetone Fractionation and Their Acyl Migration Reaction
2.1.1. Triacylglycerol Regioisomer Separation Analyzed by Ag-High-Performance Liquid Chromatography (HPLC)
2.1.2. Triacylglycerol Molecular Species Analyzed Using Reversed-Phase HPLC
2.2. Fatty Acid Composition and Melting Point
2.3. Melting and Crystallization Curves and Solid Fat Index (SFI)
2.4. Preparation of Alternative Fat by Blending of Refined Acyl Migration Reactant (RAMR) and Hydrogenated Palm Kernel Oil (HPKO)
2.5. Physicochemical Characteristics of Alternative Fat
3. Materials and Methods
3.1. Materials
3.2. Extraction of Whipping Cream Fat from Commercial Whipping Cream
3.3. Pre-Equilibration for Water Activity (aw) of Lipozyme TL IM
3.4. Acetone Fractionation of Shea Butter for Preparation of Shea Butter Solids
3.5. Enzymatic Acyl Migration of Shea Butter Solids and Production of Refined Acyl Migration Reactant (RAMR)
3.6. Analysis of Fatty Acid Composition, Triacylglycerol Molecular Species, and Triacylglycerol Regioisomer Separation
3.7. Melting Points, Solid Fat Index (SFI), and Melting and Crystallization Curves
3.8. Preparation of Alternative Fat Product
3.9. Polymorphism by X-ray Diffraction Spectroscopy
3.10. Whipping Cream Preparation and Overrun Test
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kim, H.J.; Bot, A.; de Vries, I.C.; Golding, M.; Pelan, E.G. Effects of emulsifiers on vegetable-fat based aerated emulsions with interfacial rheological contributions. Food Res. Int. 2013, 53, 342–351. Available online: https://www.sciencedirect.com/science/article/pii/S0963996913002652 (accessed on 1 July 2021). [CrossRef]
- Shamsi, K.; Man, Y.C.C.; Yusoff, M.S.A.; Jinap, S. A comparative study of dairy whipping cream and palm oil-based whipping cream in terms of FA composition and foam stability. J. Am. Oil Chem. Soc. 2002, 79, 583–588. Available online: https://aocs.onlinelibrary.wiley.com/doi/epdf/10.1007/s11746-002-0526-22 (accessed on 1 July 2021). [CrossRef]
- Ramli, N.; Said, M.; Loon, N.T. Physicochemical characteristics of binary mixtures of hydrogenated palm kernel oil and Goat milk fat. J. Food Lipids 2005, 12, 243–260. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1745-4522.2005.00021.x (accessed on 1 July 2021). [CrossRef]
- Lichtenstein, A.H.; Ausman, L.M.; Carrasco, W.; Jenner, J.L.; Ordovas, J.M.; Schaefer, E.J. Hydrogenation impairs the hypolipidemic effect of corn oil in humans. Hydrogenation, trans fatty acids, and plasma lipids. Arterioscl. Throm. Vas. 1993, 13, 154–161. Available online: https://www.ahajournals.org/doi/10.1161/01.ATV.13.2.154 (accessed on 1 July 2021). [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. Available online: https://academic.oup.com/ajcn/article/77/5/1146/4689813 (accessed on 1 July 2021). [CrossRef]
- Shin, J.A.; Akoh, C.C.; Lee, K.T. Production and physicochemical properties of functional-butterfat through enzymatic interesterification in a continuous reactor. J. Agric. Food Chem. 2009, 57, 888–900. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf802678a (accessed on 1 July 2021). [CrossRef]
- Shin, J.A.; Heo, Y.J.; Lee, K.T. Physicochemical characteristics of fat blend from hydrogenated coconut oil and acyl migrated palm mid-fraction. Food Chem. 2019, 275, 739–745. Available online: https://www.sciencedirect.com/science/article/pii/S0308814618317035 (accessed on 1 July 2021). [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Vincenzo, D.D.; Maranz, S.; Serraiocco, A.; Vito, R.; Wiesman, Z.; Bianchi, G. Regional variation in shea butter lipid and triterpene composition in four African countries. J. Agric. Food Chem. 2005, 53, 7473–7479. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf0509759 (accessed on 1 July 2021). [CrossRef]
- Arishima, T.; Tachibana, N.; Kojima, M.; Takamatsu, K.; Imaizumi, K. Screening of resistant triacylglycerols to the pancreatic lipase and their potentialities as a digestive retardant. J. Food Lipids 2009, 16, 72–88. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1745-4522.2009.01133.x (accessed on 1 July 2021). [CrossRef]
- ten Grotenhuis, E.; van Aken, G.A.; van Malssen, K.F.; Schenk, H. Polymorphism of milk fat studied by differential scanning calorimetry and real-time X-ray powder diffraction. J. Am. Oil Chem. Soc. 1999, 76, 1031–1039. Available online: https://www.researchgate.net/profile/George-Van-Aken-2/publication/227325756_Polymorphism_of_milk_fat_studied_by_differential_scanning_calorimetry_and_real-time_X-ray_power_diffraction/links/0fcfd50aa03d357fd9000000/Polymorphism-of-milk-fat-studied-by-differential-scanning-calorimetry-and-real-time-X-ray-power-diffraction.pdf?origin=publication_detail (accessed on 1 July 2021). [CrossRef]
- Rousseau, D.; Hodge, S.M.; Nickerson, M.T.; Paulson, A.T. Regulating the β′→ β polymorphic transition in food fats. J. Am. Oil Chem. Soc. 2005, 82, 7–12. Available online: https://link.springer.com/article/10.1007/s11746-005-1035-z (accessed on 1 July 2021). [CrossRef]
- Kadivar, S.; Clercq, N.D.; Nusantoro, B.P.; Le, T.T.; Dewettinck, K. Development of an offine bidimensional high-performance liquid chromatography method for analysis of stereospecific triacylglycerols in cocoa butter equivalents. J. Agric. Food Chem. 2013, 61, 7896–7903. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf401566c (accessed on 1 July 2021). [CrossRef] [PubMed]
- Lee, H.H.; Shin, J.A.; Lee, K.T. Change of hydrolysis rate on hydrogenated palm kernel oil and shea butter blendings using in vitro digestion system. J. Korean Soc. Food Sci. Nutr. 2017, 46, 1205–1215. Available online: http://koreascience.or.kr/article/JAKO201732663240020.page (accessed on 1 July 2021).
- Xu, X.; Balchen, S.; Hoy, C.E.; Alder-Nissen, J. Pilot batch production of specific-structured lipids by lipase-catalyzed interesterification: Preliminary study on incorporation and acyl migration. J. Am. Oil Chem. Soc. 1998, 75, 301–308. Available online: https://aocs.onlinelibrary.wiley.com/doi/epdf/10.1007/s11746-998-0045-4 (accessed on 1 July 2021). [CrossRef]
- Oliveira, G.M.; Ribeiro, A.P.B.; Santos, A.O.; Cardoso, L.P.; Kieckbusch, T.G. Hard fats as additives in palm oil and its relationships to crystallization process and polymorphism. LWT-Food Sci. Technol. 2015, 63, 1163–1170. Available online: https://www.sciencedirect.com/science/article/pii/S0023643815003047 (accessed on 1 July 2021). [CrossRef]
- Israel, M.O. Effect of topical and dietary use of shea butter on animals. Am. J. Life Sci. 2014, 2, 303–307. Available online: http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid=118&doi=10.11648/j.ajls.20140205.18 (accessed on 1 July 2021). [CrossRef] [Green Version]
- Zhang, Z.; Ma, X.; Huang, H.; Wang, Y. Shea olein based specialty fats: Preparation, characterization and potential application. LWT-Food Sci. Technol. 2017, 86, 492–500. Available online: https://www.sciencedirect.com/science/article/pii/S0023643817306059 (accessed on 1 July 2021). [CrossRef]
- Ribeiro, A.P.B.; Masuchi, M.H.; Miyasaki, E.K.; Domingues, M.A.F.; Stroppa, V.L.Z.; de Oliveira, G.M.; Kieckbusch, T.G. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 2015, 52, 3925–3946. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4486597/pdf/13197_2014_Article_1587.pdf (accessed on 1 July 2021). [CrossRef] [Green Version]
- Che Man, Y.B.; Shamsi, K.; Yusoff, M.S.A.; Jinap, S. A study on the crystal structure of palm oil-based whipping cream. J. Am. Oil Chem. Soc. 2003, 80, 409–415. Available online: https://aocs.onlinelibrary.wiley.com/doi/epdf/10.1007/s11746-003-0713-1 (accessed on 1 July 2021). [CrossRef]
- Zhang, Z.; Song, J.; Lee, W.J.; Xie, X.; Wang, Y. Characterization of enzymatically interesterified palm-oil based fats and its potential application as cocoa butter substitute. Food Chem. 2020, 318, 126518. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0308814620303800 (accessed on 22 July 2021). [CrossRef] [PubMed]
- Arima, S.; Ueno, S.; Ogawa, A.; Sato, K. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets. Langmuir 2009, 25, 9777–9784. Available online: https://pubs.acs.org/doi/pdf/10.1021/la901115x (accessed on 1 July 2021). [CrossRef]
- KFDA. NLS Standard Operating Procedure Analytical Methods. Korea Food and Drug Administration; Korea Food and Drug Administration: Osong, Korea, 2017; pp. 43–150.
- Jeong, S.H.; Shin, J.A.; Kim, I.H.; Kim, B.H.; Lee, J.S.; Lee, K.T. Comparison of fatty acid composition by fat extraction method: Different parts of chicken by cooking method. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1257–1263. Available online: https://www.koreascience.or.kr/article/JAKO201426059105490.pdf (accessed on 1 July 2021). [CrossRef]
- AOAC. Fat (Total, Saturated, and Unsaturated) in Food; AOAC Official Method 996.06; AOAC International: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Oh, J.E.; Lee, K.W.; Park, H.K.; Kim, J.Y.; Kwon, K.I.; Kim, J.W.; Kim, H.R.; Kim, I.H. Lipase-catalyzed acidolysis of olive oil with capric acid: Effect of water activity on incorporation and acyl migration. J. Agric. Food Chem. 2009, 57, 9280–9283. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf9023245 (accessed on 1 July 2021). [CrossRef] [PubMed]
- Shin, J.A.; Bae, S.K.; Lee, K.T. Change of solid fat index during interesterification of hydrogenated coconut oil. CNU J. Agric. Sci. 2010, 37, 69–72. Available online: https://www.koreascience.or.kr/article/JAKO201020842655143.pdf (accessed on 1 July 2021).
- Harfmann, R.G.; Julka, S.; Cortes, H.J. Instability of hexane-acetonitrile mobile phases used for the chromatographic analysis of triacylglycerides. J. Sep. Sci. 2008, 31, 915–920. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/jssc.200700578 (accessed on 1 July 2021). [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th ed.; American Oil Chemists’ Society: Champaign, IL, USA, 1990; pp. 1–25. [Google Scholar]
- | Acetone Fractionation (4 °C, 5 h) | Lipozyme TL IM (aw: 0.73) | RAMR | ||||
---|---|---|---|---|---|---|---|
- | Shea Butter | Shea Butter Liquid Fraction | Shea Butter Solid Fraction (0 h) | 3 h | 24 h | 100 h | |
SSS (1) | ND | ND | ND (6) | 23.1 ± 0.9 a | 25.3 ± 0.9 a | 25.4 ± 0.5 a | ND |
SUS (2) | 67.8 ± 0.4 | 3.6 | 92.5 ± 2.1 a | 20.1 ± 1.3 b | 12.1 ± 2.5 c | 13.3 ± 1.2 c | 19.5 ± 3.0 |
SSU (3) | 0.8 ± 0.5 | ND | 0.6 ± 0.2 d | 31.2 ± 1.2 c | 41.6 ± 0.5 a | 38.5 ± 1.0 b | 47.9 ± 2.1 |
SUU (4) | 31.3 ± 0.1 | 96.4 | 6.9 ± 1.9 c | 21.5 ± 2.3 a | 16.3 ± 1.8 b | 15.7 ± 0.5 b | 24.5 ± 0.2 |
USU (5) | ND | ND | ND | 4.1 ± 1.1 b | 4.8 ± 1.1 ab | 6.9 ± 0.1 a | 8.1 ± 0.7 |
PN (1) | Proposed TAG Species (2) | HPKO | Shea Butter | Shea Butter Liquid | Shea Butter Solid | RAMR | Alternative Fat (4) |
---|---|---|---|---|---|---|---|
24–34 | CCLa/CLaC | 12.2 ± 1.0 | ND (3) | ND | ND | ND | 10.4 ± 0.8 |
CLaLa/LaCLa | |||||||
CaCaLa/CaLaCa | |||||||
CaLaLa/LaCaLa | |||||||
CaCaM/CaMCa | |||||||
36 | LaLaLa | 26.2 ± 4.7 | ND | ND | ND | ND | 27.8 ± 0.4 |
38 | LaLaM/LaMLa | 17.5 ± 2.1 | ND | ND | ND | ND | 12.3 ± 0.7 |
40–44 | LaMM/MLaM | 21.5 ± 0.1 | ND | ND | ND | ND | 11.2 ± 1.5 |
LaLaP/LaPLa | |||||||
LaMP/LaPM | |||||||
MMM | |||||||
LaPP/PLaP | |||||||
46 | POL/OOL | 4.3 ± 0.1 | ND | ND | ND | ND | 2.8 ± 0.0 |
MOO/PPL | |||||||
MPO | |||||||
MPP | |||||||
48 | OOO | ND | 5.4 ± 1.9 | 10.5 ± 0.9 | ND | 8.5 ± 0.4 | 2.3 ± 0.1 |
POO/OPO | |||||||
POP/PPO | |||||||
PPP | 6.6 ± 1.9 | 3.6 ± 0.1 | |||||
50 | SOO/OSO | ND | 32.0 ± 1.2 | 82.8 ± 2.0 | 2.6 ± 0.1 | 30.8 ± 1.3 | 9.1 ± 1.1 |
POS/PSO | ND | 5.9 ± 1.4 | 2.3 ± 1.2 | 4.0 ± 0.1 | 7.8 ± 0.2 | 1.6 ± 0.2 | |
PPS/PSP | 4.2 ± 2.5 | ND | ND | ND | ND | 1.5 ± 0.2 | |
52 | SOS/SSO | ND | 55.5 ± 4.8 | 4.3 ± 0.2 | 92.7 ± 0.4 | 51.2 ± 1.1 | 14.1 ± 1.5 |
PSS/SPS | 4.2 ± 2.5 | ND | ND | ND | ND | 1.0 ± 0.0 | |
54 | SOA/SAO | ND | 1.1 ± 0.4 | ND | 1.3 ± 0.1 | 1.7 ± 0.3 | 0.9 ± 0.6 |
SSS | |||||||
56 | SSA/SAS | 4.4 ± 2.3 | ND | ND | ND | ND | 1.8 ± 0.4 |
Fatty Acids | Whipping Cream Fat | HPKO | Shea Butter Solid | RAMR | Alternative Fat (8) |
---|---|---|---|---|---|
C4:0 | 0.17 ± 0.02 | ND (1) | ND | ND | ND |
C6:0 | 0.44 ± 0.01 | 0.23 ± 0.01 | ND | ND | 0.14 ± 0.00 |
C8:0 | 2.58 ± 0.01 | 3.80 ± 0.03 | ND | ND | 2.25 ± 0.02 |
C10:0 | 3.21 ± 0.02 | 3.53 ± 0.01 | ND | ND | 2.11 ± 0.01 |
C12:0 | 34.44 ± 0.10 | 46.50 ± 0.01 | ND | ND | 27.78 ± 0.05 |
C14:0 | 14.93 ± 0.02 | 16.69 ± 0.01 | ND | ND | 9.94 ± 0.01 |
C14:1 | 0.34 ± 0.01 | ND | ND | ND | ND |
C16:0 | 16.56 ± 0.08 | 8.77 ± 0.01 | 3.53 ± 0.00 | 3.31 ± 0.00 | 6.57 ± 0.01 |
C16:1 | 0.52 ± 0.00 | ND | ND | 0.02 ± 0.00 | 0.01 ± 0.00 |
C18:0 | 19.10 ± 0.11 | 19.99 ± 0.01 | 55.80 ± 0.01 | 44.28 ± 0.05 | 29.82 ± 0.06 |
C18:1 trans | 0.53 ± 0.03 | 0.17 ± 0.03 | 0.02 ± 0.00 | 0.05 ± 0.00 | 0.10 ± 0.02 |
C18:1 (n-9) | 5.96 ± 0.05 | 0.09 ± 0.00 | 34.37 ± 0.00 | 45.04 ± 0.06 | 18.19 ± 0.02 |
C18:1 (n-7) | 0.19 ± 0.04 | ND | 0.17 ± 0.00 | 0.07 ± 0.00 | 0.03 ± 0.00 |
C18:2 trans | 0.23 ± 0.01 | ND | 0.14 ± 0.01 | 0.17 ± 0.00 | 0.06 ± 0.01 |
C18:2 (n-6) | 0.55 ± 0.06 | 0.01 ± 0.00 | 4.02 ± 0.00 | 5.43 ± 0.00 | 2.19 ± 0.00 |
C20:0 | 0.22 ± 0.00 | 0.22 ± 0.00 | 1.76 ± 0.01 | 1.48 ± 0.00 | 0.73 ± 0.00 |
C20:1 | ND | ND | 0.12 ± 0.00 | 0.08 ± 0.12 | 0.07 ± 0.00 |
C18:3 (n-3) | 0.11 ± 0.00 | ND | 0.06 ± 0.01 | 0.07 ± 0.00 | 0.02 ± 0.02 |
∑SFA (2) | 91.62 ± 0.08 | 99.73 ± 0.02 | 61.09 ± 0.01 | 49.06 ± 0.04 | 79.33 ± 0.00 |
∑USFA (3) | 7.59 ± 0.04 | 0.10 ± 0.00 | 38.75 ± 0.00 | 50.71 ± 0.05 | 20.51 ± 0.03 |
∑TFA (4) | 0.76 ± 0.02 | 0.17 ± 0.03 | 0.16 ± 0.01 | 0.22 ± 0.01 | 0.16 ± 0.03 |
AI (5) | 14.59 | 1220.3 | 0.09 | 0.07 | 3.61 |
SM (°C) (6) | 37.5 ± 0.7 | 39.3 ± 0.4 | 34.3 ± 0.4 | 28.5 ± 0.7 | 37.5 ± 0.7 |
CM (°C) (7) | 39 ± 0.0 | 40.3 ± 0.4 | 38.5 ± 0.7 | 41.5 ± 0.7 | 39.3 ± 0.4 |
- | Short Spacings (Å) | - | - | ||
---|---|---|---|---|---|
4.6 | 4.2 | 3.8 | Relative Content (1) (β’:β) | Polymorphic Form | |
HPKO | ND | 4.219 | 3.8301 | 100:0 | β’ |
Alternative fat (2) | 4.6526 | 4.2543 | 3.8151 | 77:23 | β’ > β |
Ingredients | Ratio (% w/w) | |
---|---|---|
Oil phase | Fat | 25 |
Lactylated monoglyceride (LMS) | 0.2 | |
Glyceryl monostearate (MAG, C18:0) | 0.5 | |
Aqueous phase | Corn syrup | 36 |
Sodium caseinate | 0.3 | |
Methyl cellulose | 0.5 | |
Sodium stearoyl lactylate (SSL) | 0.2 | |
Xanthan gum | 0.1 | |
Distilled water (DW) | 37.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-A.; Hong, Y.-J.; Lee, K.-T. Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream. Molecules 2021, 26, 4586. https://doi.org/10.3390/molecules26154586
Shin J-A, Hong Y-J, Lee K-T. Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream. Molecules. 2021; 26(15):4586. https://doi.org/10.3390/molecules26154586
Chicago/Turabian StyleShin, Jung-Ah, Yea-Jin Hong, and Ki-Teak Lee. 2021. "Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream" Molecules 26, no. 15: 4586. https://doi.org/10.3390/molecules26154586
APA StyleShin, J.-A., Hong, Y.-J., & Lee, K.-T. (2021). Development and Physicochemical Properties of Low Saturation Alternative Fat for Whipping Cream. Molecules, 26(15), 4586. https://doi.org/10.3390/molecules26154586