Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Extraction Parameters on Total Phenolics Content
2.2. Effect of Extraction Parameters on Hypolaetin and Isoscutellarein Derivatives Content
-7-O- [6‴-O-acetyl-β-d-allopyranosyl (1 → 2)]-β-d-glucopyranoside (HYP)
2.3. Optimization of Extraction Parameters and Model Validation
3. Materials and Methods
3.1. Plant Material, Standards, and Reagents
3.2. Experimental Design and Statistical Model
3.3. Extraction
3.4. Determination of Total Polyphenols
3.5. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gabrieli, C.N.; Kefalas, P.G.; Kokkalou, E.L. Antioxidant activity of flavonoids from Sideritis raeseri. J. Ethnopharmacol. 2005, 96, 423–428. [Google Scholar] [CrossRef]
- Menković, N.; Gođevac, D.; Šavikin, K.; Zdunić, G.; Milosavljević, S.; Bojadži, A.; Avramoski, O. Bioactive Compounds of Endemic Species Sideritis raeseri subsp. raeseri Grown in National Park Galičica. Rec. Nat. Prod. 2013, 7, 161–168. [Google Scholar]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Pljevljakušić, D.; Šavikin, K.; Janković, T.; Zdunić, G.; Ristić, M.; Godjevac, D.; Konić-Ristić, A. Chemical properties of the cultivated Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Food Chem. 2011, 124, 226–233. [Google Scholar]
- Ibraliu, A.; Trendafilova, A.B.; Anđelković, B.D.; Qazimi, B.; Gođevac, D.M.; Shengjergji, D.; Bebeci, E.; Stefkov, G.; Zdunic, G.; Aneva, I.I.; et al. Comparative Study of Balkan Sideritis Species from Albania, Bulgaria and Macedonia. Eur. J. Med. Plants 2015, 5, 328–340. [Google Scholar] [CrossRef]
- Janeska, B.; Stefova, M.; Alipieva, K. Assay of flavonoid aglycones from the species of genus Sideritis (Lamiaceae) from Macedonia with HPLC-UV DAD. Acta Pharm. 2007, 57, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Brankovic, S.; Kitic, D.; Radenkovic, M.; Veljkovic, S.; Jankovic, T.; Šavikin, K.; Zdunic, G. Spasmolytic Activity of the Ethanol Extract of Sideritis raeseri spp. raeseri Boiss. & Heldr. on the Isolated Rat Ileum Contractions. J. Med. Food 2005, 14, 495–498. [Google Scholar]
- Kitic, D.; Brankovic, S.; Radenkovic, M.; Savikin, K.; Zdunic, G.; Kocic, B.; Velickovic Radovanovic, R. Hypotensive, Vasorelaxant And Cardiodepressant Activities Of The Ethanol Extract Of Sideritis Raeseri Spp. Raeseri Boiss & Heldr. J. Physiol. Pharmacol. 2012, 63, 531–535. [Google Scholar] [PubMed]
- Charami, M.-T.; Lazari, D.; Karioti, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and antiinflammatory activities of Sideritis perfoliata subsp. perfoliata (Lamiaceae). Phytother. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Verma, N.; Gupta, D.K.; Puri, S.C.; Handa, G.; Sharma, V.K.; Quazi, G.N. Comparison of extraction techniques for extraction of bioactive molecules from Hypericum perforatum L. plant. J. Chromatogr. Sci. 2005, 43, 530–531. [Google Scholar] [CrossRef] [Green Version]
- Hayta, M.; Işçimen, E.M. Optimization of ultrasound-assisted antioxidant compounds extraction from germinated chickpea using response surface methodology. LWT 2017, 77, 208–216. [Google Scholar] [CrossRef]
- Alipieva, K.; Petreska, J.; Gil-Izquierdo, A.; Stefova, M.; Evstatieva, L.; Bankova, V. Influence of the extraction method on the yield of flavonoids and phenolics from Sideritis spp. (Pirin Mountain tea). Nat. Prod. Commun. 2010, 5, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Tsibranska, I.; Tylkowski, B.; Kochanov, R.; Alipieva, K. Extraction of biologically active compounds from Sideritis ssp. L. Food Bioprod. Process. 2011, 89, 273–280. [Google Scholar] [CrossRef]
- Bezzera, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Kim, H.S.; Jo, J.E.; Kang, K.B.; Moon, B.C.; Chun, J.M.; Ji, Y.; Kim, H.K. Optimization of extraction conditions for major iridoid components in fruit of corni (Cornus officinalis) by UPLC-PDA using response surface methodology. Food Sci. Biotechnol. 2012, 4, 1023–1029. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fernandes, F.A.N.; De Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crops Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds fromwheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Mayers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; Wiley: Chichester, UK, 2009. [Google Scholar]
- Karapandzova, M.; Qazimi, B.; Stefkov, G.; Bačeva, K.; Stafilov, T.; Kadifkova Panovska, T.; Kulevanoa, S. Chemical characterization, mineral content and radical scavenging activity of Sideritis scardica and S. raeseri from R. Macedonia and R. Albania. Nat. Prod. Commun. 2013, 8, 639–644. [Google Scholar] [CrossRef]
- Tunalier, Z.; Kosar, M.; Ozturk, N.; Baser, K.H.; Duman, H.; Kirimer, N. Antioxidant properties and phenolic composition of Sideritis species. Chem. Nat. Compd. 2004, 40, 206–210. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Kazemi, M.; Karim, R.; Mirhosseini, H.; Hamid, A.A. Optimization of pulsed ultrasonic-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: Punicalagin and hydroxybenzoic acids. Food Chem. 2016, 206, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 2016, 29, 502–511. [Google Scholar] [CrossRef]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Chanioti, S.; Tzia, C. Optimization of ultrasound-assisted extraction of oil from olive pomace using response surface technology: Oil recovery, unsaponifiable matter, total phenol content and antioxidant activity. LWT 2017, 79, 178–189. [Google Scholar] [CrossRef]
- Arruda, H.S.; Perreira, G.A.; Pastore, G.M. Optimization of extraction parameters of total phenolics from Annona crassiflora Mart. (Araticum) fruits using response surface methodology. Food Anal. Methods 2017, 10, 100–110. [Google Scholar] [CrossRef]
- Petreska, J.; Stefova, M.; Ferreres, F.; Moreno, D.A.; Tomas-Barberan, F.A.; Stefkov, G.; Kulevanova, S.; Gil-Izquierdo, A. Potential bioactive phenolics of Macedonian Sideritis species used for medicinal “Mountain tea”. Food Chem. 2011, 125, 13–20. [Google Scholar] [CrossRef]
- Fragas, B.M. Phytochemistry and chemotaxonomy of Sideritis species from the Mediterranean region. Phytochemistry 2012, 76, 7–24. [Google Scholar] [CrossRef]
- Güvenç, A.; Okada, Y.; Küpeli Akkol, E.; Duman, H.; Okuyama, T.; Çalış, I. Investigations of anti-inflammatory, antinociceptive, antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem. 2010, 118, 686–692. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J.B. Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb(II) adsorption onto Robinia tree leaves. J. Chemom. 2013, 27, 12–20. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. (Eds.) Extraction and chemical quantification. In Analysis of Phenolic Plant Metabolites. Methods in Ecology; Blackwell Publishing: Oxford, UK, 1994; pp. 66–103. [Google Scholar]
Input Variable | Symbol | Level | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
Extraction time (min) | X1 | 5 | 20 | 35 | 50 | 65 |
Ethanol concentration (%) | X2 | 10 | 30 | 50 | 70 | 90 |
Solid-to-solvent ratio (g/mL) | X3 | 1:10 | 1:20 | 1:30 | 1:40 | 1:50 |
Extraction temperature (°C) | X4 | 20 | 35 | 50 | 65 | 80 |
Run | Extraction Time (min) | Ethanol Concentration [%] | Solid-to-Solvent Ratio (g/mL) | Temperature (°C) | TP (mg GAE/g dw) | HYP (mg/g dw) | ISC 1 (mg/g dw) | ISC 2 (mg/g dw) |
---|---|---|---|---|---|---|---|---|
1 | 5 | 50 | 01:30 | 50 | 39.14 | 10.88 | 9.54 | 14.42 |
2 | 20 | 30 | 01:20 | 35 | 34.49 | 6.75 | 6 | 7.02 |
3 | 20 | 30 | 01:20 | 65 | 31.48 | 5.68 | 5.06 | 6.22 |
4 | 20 | 30 | 01:40 | 35 | 36.1 | 6.2 | 4.2 | 5.56 |
5 | 20 | 30 | 01:40 | 65 | 42.39 | 7.89 | 7.93 | 9.58 |
6 | 20 | 70 | 01:20 | 35 | 30.43 | 8.86 | 6.94 | 10.41 |
7 | 20 | 70 | 01:20 | 65 | 34.29 | 8.24 | 8.06 | 10.91 |
8 | 20 | 70 | 01:40 | 35 | 40.83 | 8.97 | 7.34 | 11.46 |
9 | 20 | 70 | 01:40 | 65 | 40.77 | 10.48 | 10.68 | 14.2 |
10 | 35 | 10 | 01:30 | 50 | 19.32 | 1.05 | 0.68 | 0.74 |
11 | 35 | 50 | 01:10 | 50 | 28.87 | 8.74 | 7.71 | 10.93 |
12 | 35 | 50 | 01:30 | 20 | 29.29 | 9.05 | 7.53 | 10.41 |
13 | 35 | 50 | 01:30 | 50 | 42.24 | 11.34 | 9.2 | 13.9 |
14 | 35 | 50 | 01:30 | 50 | 39.87 | 10.18 | 9.56 | 13.03 |
15 | 35 | 50 | 01:30 | 50 | 36.27 | 9.65 | 8.66 | 11.96 |
16 | 35 | 50 | 01:30 | 50 | 37.26 | 9.58 | 8.55 | 11.71 |
17 | 35 | 50 | 01:30 | 50 | 41.69 | 9.68 | 8.16 | 12.17 |
18 | 35 | 50 | 01:30 | 50 | 43.25 | 10.39 | 9.2 | 13.69 |
19 | 35 | 50 | 01:30 | 80 | 45.31 | 10.37 | 9.07 | 13.02 |
20 | 35 | 50 | 01:50 | 50 | 44.43 | 11.12 | 8.78 | 14.43 |
21 | 35 | 90 | 01:30 | 50 | 36.98 | 10.2 | 8.17 | 13.29 |
22 | 50 | 30 | 01:20 | 35 | 32.37 | 5.09 | 4.18 | 4.61 |
23 | 50 | 30 | 01:20 | 65 | 35.64 | 7.14 | 7.42 | 8.25 |
24 | 50 | 30 | 01:40 | 35 | 38.92 | 6.42 | 5.05 | 6.49 |
25 | 50 | 30 | 01:40 | 65 | 37.83 | 6.84 | 6.78 | 8.65 |
26 | 50 | 70 | 01:20 | 35 | 25.48 | 7.33 | 7.8 | 9.19 |
27 | 50 | 70 | 01:20 | 65 | 40.06 | 10.61 | 10.03 | 13.59 |
28 | 50 | 70 | 01:40 | 35 | 42.78 | 10.32 | 8.74 | 13.43 |
29 | 50 | 70 | 01:40 | 65 | 47.23 | 11.46 | 10.09 | 15.56 |
30 | 65 | 50 | 01:30 | 50 | 43.32 | 9.36 | 9.58 | 12.55 |
Term | Response | |||
---|---|---|---|---|
TP | HYP | ISC 1 | ISC 2 | |
Linear | ||||
X1 b | 0.3807 | 0.8605 | 0.4147 | 0.9215 |
X2 | 0.0302 | <0.0001 | <0.0001 | <0.0001 |
X3 | 0.0004 | 0.0193 | 0.1339 | 0.0065 |
X4 | 0.0092 | 0.0498 | 0.0014 | 0.0034 |
Interaction | ||||
X1X2 | 0.5891 | 0.3316 | 0.3866 | 0.3613 |
X1X3 | 0.8162 | 0.8383 | 0.4669 | 0.6875 |
X1X4 | 0.3965 | 0.2194 | 0.7378 | 0.3045 |
X2X3 | 0.2345 | 0.4142 | 0.4848 | 0.2654 |
X2X4 | 0.3007 | 0.6001 | 0.9391 | 0.8925 |
X3X4 | 0.5819 | 0.7931 | 0.2578 | 0.5562 |
Quadratic | ||||
X12 | 0.5524 | 0.4861 | 0.5672 | 0.7984 |
X22 | 0.0030 | <0.0001 | <0.0001 | <0.0001 |
X32 | 0.3950 | 0.3569 | 0.2446 | 0.3203 |
X42 | 0.5156 | 0.2393 | 0.2737 | 0.0719 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šavikin, K.; Živković, J.; Janković, T.; Ćujić-Nikolić, N.; Zdunić, G.; Menković, N.; Drinić, Z. Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology. Molecules 2021, 26, 3949. https://doi.org/10.3390/molecules26133949
Šavikin K, Živković J, Janković T, Ćujić-Nikolić N, Zdunić G, Menković N, Drinić Z. Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology. Molecules. 2021; 26(13):3949. https://doi.org/10.3390/molecules26133949
Chicago/Turabian StyleŠavikin, Katarina, Jelena Živković, Teodora Janković, Nada Ćujić-Nikolić, Gordana Zdunić, Nebojša Menković, and Zorica Drinić. 2021. "Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology" Molecules 26, no. 13: 3949. https://doi.org/10.3390/molecules26133949
APA StyleŠavikin, K., Živković, J., Janković, T., Ćujić-Nikolić, N., Zdunić, G., Menković, N., & Drinić, Z. (2021). Optimization of Ultrasound-Assisted Extraction of Phenolics from Sideritis raeseri Using Response Surface Methodology. Molecules, 26(13), 3949. https://doi.org/10.3390/molecules26133949