Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ramos, L. Critical overview of selected contemporary sample preparation techniques. J. Chromatogr. A 2012, 1221, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Jeannot, M.A. Extraction—Liquid phase microextraction. Encycl. Sep. Sci. 2007, 1–5. [Google Scholar] [CrossRef]
- Kokosa, J.M. Advances in solvent-microextraction techniques. TrAC-Trend Anal. Chem. 2013, 43, 2–13. [Google Scholar] [CrossRef]
- Anthony, J.L.; Brennecke, J.A.; Holbrey, J.D.; Maginn, E.J.; Mantz, R.A.; Rogers, R.D.; Trulove, P.C.; Visser, A.E.; Welton, T. Physicochemical properties of ionic liquids. In Ionic Liquids in Synthesis, 1st ed.; Wasserscheid, P., Welton, T., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2002; pp. 41–55. [Google Scholar]
- Trujillo-Rodriguez, M.J.; Nan, H.; Varona, M.; Emaus, M.N.; Souza, I.D.; Anderson, J.L. Advances of ionic liquids in analytical chemistry. Anal. Chem. 2019, 91, 505–531. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.J.; MacFarlane, D.R. Phosphonium-based ionic liquids: An overview. Aust. J. Chem. 2009, 62, 309–321. [Google Scholar] [CrossRef]
- Stojanovic, A.; Morgenbesser, C.; Kogelnig, D.; Krachler, R.; Keppler, B.K. Quaternary ammonium and phosphonium ionic liquids. In Chemical and Environmental Engineering, Ionic Liquids: Theory, Properties, New Approaches, 1st ed.; Kokorin, A., Ed.; InTech: London, UK, 2011; pp. 657–680. [Google Scholar]
- Berton, P.; Wuilloud, R.G. An online ionic liquid-based microextraction system coupled to electrothermal atomic absorption spectrometry for cobalt determination in environmental samples and pharmaceutical formulations. Anal. Methods 2011, 3, 664–672. [Google Scholar] [CrossRef]
- Martinis, E.M.; Berton, P.; Altamirano, J.C.; Hakala, U.; Wuilloud, R.G. Tetradecyl(trihexyl)phosphonium chloride ionic liquid single-drop microextraction for electrothermal atomic absorption spectrometric determination of lead in water samples. Talanta 2010, 80, 2034–2040. [Google Scholar] [CrossRef]
- Martinis, E.M.; Escudero, L.B.; Berton, P.; Monasterio, R.P.; Filippini, M.F.; Wuilloud, R.G. Determination of inorganic selenium species in water and garlic samples with on-line ionic liquid dispersive microextraction and electrothermal atomic absorption spectrometry. Talanta 2011, 30, 2182–2188. [Google Scholar] [CrossRef]
- Deng, N.; Li, M.; Zhao, L.; Lu, C.; de Rooy, S.L.; Warner, I.M. Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation. J. Hazard. Mater. 2011, 192, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.M.; Borges, R.P.; Godinho, M.; Marques, C.S.; Langa, E.; Ribeiro, A.P.C.; Lourenço, M.J.V.; Santos, F.J.V.; de Castro, C.A.N.; Macatrão, M.; et al. Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim][FeCl4] and [P66614][FeCl4]. Fluid Phase Equilibria 2013, 350, 43–50. [Google Scholar] [CrossRef]
- Clark, K.D.; Nacham, O.; Purslow, J.A.; Pierson, S.A.; Anderson, J.L. Magnetic ionic liquids in analytical chemistry: A review. Anal. Chim. Acta 2016, 934, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M. Magnetic ionic liquids in analytical sample preparation: A literature review. Trends Anal. Chem. 2019, 113, 210–223. [Google Scholar] [CrossRef]
- Yu, H.; Merib, J.; Anderson, J.L. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J. Chromatogr. A 2016, 1463, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.G.; Pierson, S.A.; Anderson, J.L.; Stalikas, C.D. Enhanced magnetic ionic liquid-based dispersive liquid-liquid microextraction of triazines and sulfonamides through a one-pot, pH-modulated approach. J. Chromatogr. A 2018, 1571, 47–54. [Google Scholar] [CrossRef]
- Benede, J.L.; Anderson, J.L.; Chisvert, A. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction. Talanta 2018, 176, 253–261. [Google Scholar] [CrossRef]
- Chisvert, A.; Benede, J.L.; Anderson, J.L.; Pierson, S.A.; Salvador, A. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: Stir bar dispersive liquid microextraction. Anal. Chim. Acta 2017, 983, 130–140. [Google Scholar] [CrossRef]
- Fiorentini, E.F.; Escudero, L.B.; Wuilloud, R.G. Magnetic ionic liquid-based dispersive liquid-liquid microextraction technique for preconcentration and ultra-trace determination of Cd in honey. Anal. Bioanal. Chem. 2018, 410, 4715–4723. [Google Scholar] [CrossRef]
- Fiorentini, E.F.; Canizo, B.V.; Wuilloud, R.G. Determination of as in honey samples by magnetic ionic liquid-based dispersive liquid-liquid microextraction and electrothermal atomic absorption spectrometry. Talanta 2019, 198, 146–153. [Google Scholar] [CrossRef]
- Merib, J.; Spudeit, D.A.; Corazza, G.; Carasek, E.; Anderson, J.L. Magnetic ionic liquids as versatile extraction phases for the rapid determination of estrogens in human urine by dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography-diode array detection. Anal. Bioanal. Chem. 2018, 410, 4689–4699. [Google Scholar] [CrossRef]
- Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542–120550. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Anderson, J.L.; Stalikas, C.D. Matrix solid-phase dispersion based on magnetic ionic liquids: An alternative sample preparation approach for the extraction of pesticides from vegetables. J. Chromatogr. A 2018, 1581–1582, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Trujillo-Rodriguez, M.J.; Pino, V.; Anderson, J.L. Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 2017, 172, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Racz, L.; Goel, R.K. Fate and removal of estrogens in municipal wastewater. J. Environ. Monit. 2010, 12, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Ting, Y.F.; Praveena, S.M. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: A mini review. Environ. Monit. Assess. 2017, 189, 178. [Google Scholar] [CrossRef]
- Briciu, R.D.; Kot-Wasik, A.; Namiesnik, J. Analytical challenges and recent advances in the determination of estrogens in water environments. J. Chromatogr. Sci. 2009, 47, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Mallick, B.; Balke, B.; Felser, C.; Mudring, A.-V. Dysprosium room-temperature ionic liquids with strong luminescence and response to magnetic fields. Angew. Chem. Int. Ed. 2008, 47, 7635–7638. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Basheer, C.; Lee, H.K. Solvent-bar microextraction of herbicides combined with non-aqueous field-amplified sample injection capillary electrophoresis. J. Chromatogr. A 2010, 1217, 6036–6043. [Google Scholar] [CrossRef]
- Burghoff, B.; Goetheer, E.L.V.; de Haan, A.B. COSMO-RS-based extractant screening for phenol extraction as model system. Ind. Eng. Chem. Res. 2008, 47, 4263–4269. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1995. [Google Scholar]
- Derringer, G.C.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Wu, C.-Q.; Chen, D.-Y.; Feng, Y.-S.; Deng, H.-M.; Liu, Y.-H.; Zhou, A.-J. Determination of estrogens in water samples by ionic liquid-based dispersive liquid-liquid microextraction combined with high performance liquid chromatography. Anal. Lett. 2012, 45, 1995–2005. [Google Scholar] [CrossRef]
- Melwanki, M.B.; Huang, S.-D. Three-phase system in solvent bar microextraction: An approach for the sample preparation of ionizable organic compounds prior to liquid chromatography. Anal. Chim. Acta 2006, 555, 139–145. [Google Scholar] [CrossRef]
- Zou, Y.; Li, Y.; Jin, H.; Zou, D.; Liu, M.; Yang, Y. Ultrasound-assisted surfactant-enhanced emulsification microextraction combined with HPLC for the determination of estrogens in water. J. Braz. Chem. Soc. 2012, 23, 694–701. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.; Nogueira, J.M.F. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J. Pharm. Biomed. 2006, 41, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, Y.; He, M.; Hu, B. Hollow fiber liquid-liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection for the determination of various environmental estrogens in environmental and biological samples. J. Chromatogr. A 2013, 1305, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, Y.; Liu, Y. Enrichment and determination of trace estradiol in environmental water samples by hollow-fiber liquid-phase microextraction prior to HPLC. J. Chromatogr. Sci. 2011, 49, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjmohammadi, M.R.; Ghoreishi, S.S. Determination of estrogens in water samples using dispersive liquid liquid microextraction and high performance liquid chromatography. Acta Chim. Slov. 2011, 58, 765–771. [Google Scholar]
- Sousa, É.M.L.; Dias, R.A.S.; Sousa, E.R.; Brito, N.M.; Freitas, A.S.; Silva, G.S.; Silva, L.K.; Lima, D.L.; Esteves, V.I.; Silva, G.S. Determination of three estrogens in environmental water samples using dispersive liquid-liquid microextraction by high-performance liquid chromatography and fluorescence detector. Water Air Soil Pollut. 2020, 231, 172. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Hernández-Borges, J.; Asensio-Ramos, M.; Herrera-Herrera, A.V.; Palenzuela, J.A.; Rodríguez-Delgado, M.A. Determination of estrogens in environmental water samples using 1,3-dipentylimidazolium hexafluorophosphate ionic liquid as extraction solvent in dispersive liquid–liquid microextraction. Electrophoresis 2014, 35, 2479–2487. [Google Scholar] [CrossRef]
Parameter | E3 | E2 | EE2 | E1 | |||
---|---|---|---|---|---|---|---|
Calibration range (µg L−1) | 0.5–1000 | 0.5–1000 | 1–1000 | 1–1000 | |||
Correlation coefficients (r) | 0.9986 | 0.9988 | 0.9990 | 0.9983 | |||
LOD (µg L−1) | 0.2 | 0.2 | 0.3 | 0.5 | |||
RSD (%) | 4.1 | 4.1 | 4.9 | 5.0 | |||
Retention time (min) | 14.9 | 26.5 | 28.2 | 29.4 | |||
Capacity factor (k’) | 2.69 | 5.55 | 5.98 | 6.27 | |||
Efficiency factor (N) | 5929 | 17,838 | 9864 | 28,873 | |||
Separation factor (α) | 2.06 | 1.08 | 1.05 | ||||
Resolution (R) | 14.8 | 1.76 | 1.40 |
Analyte | Tap Water | Lake Water | Wastewater | ||||
---|---|---|---|---|---|---|---|
Added (µg L−1) | Found (µg L−1) | Recovery (%) | Found (µg L−1) | Recovery (%) | Found (µg L−1) | Recovery (%) | |
E1 | 5.00 | 4.98 ± 0.25 | 99.6 | 4.89 ± 0.24 | 97.8 | 4.53 ± 0.23 | 90.6 |
20.0 | 19.6 ± 0.88 | 98.1 | 19.3 ± 0.87 | 96.5 | 17.9 ± 0.72 | 89.5 | |
E2 | 5.00 | 4.92 ± 0.24 | 98.3 | 4.83 ± 0.22 | 96.6 | 4.43 ± 0.21 | 88.5 |
20.0 | 19.7 ± 0.85 | 98.6 | 19.6 ± 0.95 | 97.9 | 17.8 ± 0.86 | 89.2 | |
EE2 | 5.00 | 4.93 ± 0.20 | 98.5 | 4.91 ± 0.20 | 98.1 | 4.45 ± 0.25 | 88.9 |
20.0 | 20.0 ± 0.81 | 99.9 | 19.5 ± 0.82 | 97.8 | 17.7 ± 0.74 | 88.4 | |
E3 | 5.00 | 4.93 ± 0.21 | 98.6 | 4.90 ± 0.19 | 98.0 | 4.50 ± 0.19 | 89.9 |
20.0 | 19.8 ± 0.82 | 98.9 | 19.6 ± 0.81 | 98.2 | 18.1 ± 0.75 | 90.3 |
Technique | Estrogens | Extraction Time (min) | LOD (µg L−1) | RSD (%) | Sample Consumption (mL) | Calibration Range (µg L−1) | Reference |
---|---|---|---|---|---|---|---|
UASEME | E1, E2, diethylstilbestrol (DES) | <15 | 0.1–0.2 | <1.28 | 10 | 10–1000 | [35] |
SBSE-LD | E1, E2, EE2, DES, mestranol, progesterone, norethisterone, norgestrel | 120 | 0.3–1.0 | <17.1 | 30 | 1.25–50.0 | [36] |
HF-LLLME | E1, E2, E3, EE2, DES, dienestrol (DIS), bisphenol-A, 4-t-octylphenol | 50 | 0.11–0.66 | <8.4 | 6 | 0.5–500 2–1000 | [37] |
HF-LPME | E2 | 60 | 0.1 | 5.5 | 140 | 1–1000 | [38] |
DLLME | E1, E2, DES | <11 | 0.008–0.010 | <4.9 | 5 | 0.020–500.0 | [39] |
DLLME | E1, E2, EE2 | 0.5 | 0.003–0.020 | ---a | 8 | 0.01–0.5 (E2, EE2) 0.04–4 (E1) | [40] |
IL-DLLME | E1, E2, E3, EE2, DES | <21 | 0.08–0.5 | <5.7 | 5 | 0.2–100 1.0–100 | [33] |
IL-DLLME | E1, E2, EE2, DES, DIS, hexestrol | 1 | 13.8–37.1 | <8.3 | ---a | 1.5–1732 | [41] |
IL-on SBME | E1, E2, E3, EE2 | 60 | 0.2–0.5 | < 5.1 | 15 | 1.0–1000 | Present work |
Extraction Conditions | |||
---|---|---|---|
Pre-treated sample volume (mL) | 15 | ||
MIL mass (mg) | 26 | ||
pH | 4.5 | ||
NaCl concentration (% (w/v)) | 6 | ||
Extraction time (min) | 60 | ||
Stirring rate (rpm) | 300 | ||
HPLC Instrumental Conditions | |||
Selected absorption wavelength | 200 nm | ||
Injection volume | 20 µL | ||
LC column | Luna C18 (4 µm × 4.6 mm i.d. × 250 mm) | ||
Flow rate | 0.5 mL min−1 | ||
Column temperature | 25 °C | ||
Mobile phases | A: water B: acetonitrile | ||
HPLC Gradient Program | |||
Step | Initial Time (min) | Final Time (min) | Final Composition of Mobile Phase |
0 | 0.0 | 5.0 | 70% A; 30% B (isocratic) |
1 | 5.0 | 35 | 20% A; 80% B (linear gradient) |
2 | 35 | 40 | 100% B (isocratic) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berton, P.; Siraj, N.; Das, S.; de Rooy, S.; Wuilloud, R.G.; Warner, I.M. Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules 2021, 26, 32. https://doi.org/10.3390/molecules26010032
Berton P, Siraj N, Das S, de Rooy S, Wuilloud RG, Warner IM. Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules. 2021; 26(1):32. https://doi.org/10.3390/molecules26010032
Chicago/Turabian StyleBerton, Paula, Noureen Siraj, Susmita Das, Sergio de Rooy, Rodolfo G. Wuilloud, and Isiah M. Warner. 2021. "Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids" Molecules 26, no. 1: 32. https://doi.org/10.3390/molecules26010032
APA StyleBerton, P., Siraj, N., Das, S., de Rooy, S., Wuilloud, R. G., & Warner, I. M. (2021). Efficient Low-Cost Procedure for Microextraction of Estrogen from Environmental Water Using Magnetic Ionic Liquids. Molecules, 26(1), 32. https://doi.org/10.3390/molecules26010032