Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Properties (X-ray Diffraction)
2.2. Redox Properties of Pure Oxide (TPR-H2 Analysis)
2.3. Chemical State Surface of Iron, Cobalt and Silicon (XPS Analysis)
2.4. Chemical Environment of the Iron (Mössbauer Spectroscopy)
2.5. N2 Adsorption and Desorption Isotherms (Textural Properties)
2.6. Morphological Properties (SEM-FEG and TEM)
2.7. Adsorption Tests
2.8. Magnetic Properties (VSM, Mzfc, and Mfc)
2.9. Mechanistic Proposal
3. Materials and Methods
3.1. Synthesis of SBA-15 Silica
3.2. Synthesis of Dispersed Oxide in SBA-15 Using the Incipient Impregnation Method
3.3. Synthesis of the Composite Fe2SiO4-Fe7Co3 Dispersed in the Mesoporous SBA-15
3.4. Adsorption of Dyes Using Fe2SiO4-Fe7Co3 Composite Dispersed in SBA-15
3.5. Characterization of Nanocomposite Fe2SiO4-Fe7Co3-SBA-15
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lopez, G.P.; Condo, A.M.; Urreta, S.E.; Silvetti, S.P. Synthesis of Fe/SiO2 and iron oxides/SiO2 nanocomposites by long-term ball milling. Mater. Res. Bull. 2014, 49, 237–244. [Google Scholar] [CrossRef]
- Handley, R.C.O. Modern Magnetic Materials, Principles and Applications; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Dormann, J.L.; Fiorani, D. Magnetic Properties of Fine Particles; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Hadjipanayis, G.C.; Prinz, G.A. Science and Technology of Nanostructured Magnetic Materials; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Wang, Z.; Liu, X.; Lv, M.; Meng, J. A new king of mesoporous Fe7Co3/carbon nanocomposite and its application as magnetically separable adsorber. Mater. Lett. 2010, 64, 1219–1221. [Google Scholar]
- Braga, T.P.; Pinheiro, A.N.; Herrera, W.T.; Xing, Y.T.; Baggio-Saitovitch, E.; Valentini, A. Synthesis and characterization of iron oxide nanoparticles dispersed in mesoporous aluminum oxide or silicon oxide. J. Mater. Sci. 2011, 46, 766–773. [Google Scholar] [CrossRef]
- Zang, B.B.; Xu, J.C.; Wang, P.F.; Wang, X.Q. Ordered NiO/NiFe2O4 nanocomposites: Synthesis, exchange bias and magnetic properties. J. Alloys Compd. 2016, 662, 348–354. [Google Scholar] [CrossRef]
- Kuhrt, C.; Schultz, L. Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co. J. Appl. Phys. 1992, 71, 1896. [Google Scholar] [CrossRef]
- Xu, C.L.; Qin, D.H.; Li, H.; Guo, Y.; Xu, T.; Li, H.L. Low-temperature growth and optical properties of radial ZnO nanowires. Mater. Lett. 2004, 58, 3976. [Google Scholar] [CrossRef]
- Shao, I.; Chen, M.W.; Cammarata, R.C.; Searsom, P.C.; Prokes, S.M. Deposition and Characterization of Fe055Co0.45 Nanowires. J. Electrochem. Soc. 2007, 154, 572. [Google Scholar] [CrossRef]
- Yang, J.; Cui, C.; Yang, W.; Hu, B.; Sun, J. Electrochemical fabrication and magnetic properties of Fe7Co3 alloy nanowire array. J. Mater. Sci. 2011, 46, 2379–2383. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Li, G.; Xu, Y. Hollow CoFe2O4-Co3Fe7 microsheres applied in electromagnetic absorption. J. Magn. Magn. Mater. 2015, 377, 259–266. [Google Scholar] [CrossRef]
- Geiger, C.A.; Grodzicki, M.; Dachs, E. An analysis of the magnetic behavior of olivine and garnet substitutional solid solutions. Am. Mineral. 2019, 104, 1246–1255. [Google Scholar] [CrossRef]
- Talkey, H. Growth of fayalite (Fe2SiO4) single crystals by the floationg-zone method. J. Cryst. Groeth 1978, 43, 463–468. [Google Scholar]
- Hafner, S.S.; Stanek, J.; Staner, M. 57Fe Hyperfine interactions in the magnetic phase of fayalite, Fe2SiO4. J. Phys. Chem. Solids 1990, 51, 203–208. [Google Scholar] [CrossRef]
- Guo, P.; Wang, C. Good lithium storage performance of Fe2SiO4 as an anode material for secondary lithium ion batteries. RSC Adv. 2017, 7, 4437. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Li, Y. Properties of Fe2SiO4/SiO2 coated Fe-Si soft magnetic composites preparedby sintering Fe-6.5wt% Si/Fe3O4 composite particles. J. Magn. Mater. 2020, 499, 166278. [Google Scholar] [CrossRef]
- Baig, S.A.; Sheng, T.; Sun, C.; Xue, X.; Tan, L.; Xu, X. Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance. PLoS ONE 2014, 9, 6. [Google Scholar] [CrossRef]
- Zan, F.L.; Ma, Y.Q.; Ma, Q.; Zheng, G.H.; Dai, Z.X.; Wu, M.Z.; Li, G.; Sun, Z.Q.; Chen, X.S.J. One-step hydrothermal synthesis and characterization of high magnetization CoFe2O4/Co0.7Fe0.3 nanocomposite permanent magnets. J. Alloys Compd. 2013, 553, 79. [Google Scholar] [CrossRef]
- Xiang, J.; Zhang, X.; Li, J.; Chu, Y.; Shen, X. Fabrication, characterization, exchange coupling and magnetic behavior of CoFe2O4/CoFe2 nanocomposite nanofibers. Chem. Phys. Lett. 2013, 576, 39. [Google Scholar] [CrossRef]
- Soares, J.M.; Cabral, F.O.; de Araujo, J.H.; Machado, F.L. Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 2011, 98, 072502. [Google Scholar] [CrossRef]
- Roy, D.; Sreenivasulu, K.V.; Anil Kumar, P.S. Investigation on non-exchange spring behaviour and exchange spring behaviour: A first order reversal curve analysis. Appl. Phys. Lett. 2013, 103, 222406. [Google Scholar] [CrossRef] [Green Version]
- Leite, G.C.P.; Chagas, E.F.; Pereira, R.; Prado, R.J.; Terezo, A.J.; Alzamora, M.; Baggio-Saitovitch, E. Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Magn. Magn. Mater. 2012, 324, 2711. [Google Scholar] [CrossRef] [Green Version]
- Quesada, A.; Rubio-Marcos, F.; Marco, J.F.; Mompean, F.J.; García-Hernández, M.; Fernández, J.F. On the origin of remanence enhancement in exchange-uncoupled CoFe2O4-based composites. Appl. Phys. Lett. 2014, 105, 202405. [Google Scholar] [CrossRef] [Green Version]
- Pint, R.G.; Yaremchenk, A.A.; Baptista, M.F.; Tarelho, L.A.C.; Frade, J.R. Synthetic fayalite Fe2SiO4 by kinetically controlled reaction between hematite and silicon carbide. J. Am. Ceram. Soc. 2019, 102, 5090–5102. [Google Scholar] [CrossRef]
- Zelenakova, A.; Zelenak, V.; Bednarcik, J.; Hrubovcak, P.; Kova, J. Magnetic nanocomposites of periodic mesoporous silica: The influence of the silica substrate dimensionality on the inter-particle magnetic interactions. J. Alloys Compd. 2014, 582, 483–490. [Google Scholar] [CrossRef]
- Andersson, N.; Corkery, R.W.; Alberius, P.C.A. One-pot synthesis of well ordered mesoporous magnetic carriers. J. Mater. Chem. 2007, 17, 2700. [Google Scholar]
- Costacurta, S.; Malfatti, L.; Innocenzi, P.; Amenitsch, H.; Masili, A.; Corrias, A.; Casula, M.F. Confined growth of iron cobalt nanocrystals in mesoporous silica thin films: FeCo-SiO2 nanocomposites. Microporous Mesoporous Mater. 2008, 115, 338–344. [Google Scholar] [CrossRef]
- Huirache-Acuña, R.; Nava, R.; Peza-Ledesma, C.L.; Lara-Romero, J.; Alonso-Núñez, G.; Pawelec, B.; Rivera-Muñoz, E.M. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review. Materials 2013, 6, 4139–4167. [Google Scholar] [CrossRef] [Green Version]
- Stevens, W.J.J.; Lebeau, K.; Mertens, M.; van Tendeloo, G.; Cool, P.; Vansant, E.F. Investigation of the morphology of the mesoporous SBA-16 and SBA-15 materials. J. Phys. Chem. B 2006, 110, 9183–9187. [Google Scholar] [CrossRef]
- Rahmat, N.; Zuhairi, A.A.; Rahman Mohamed, A. A review: Mesoporous santa barbara amorphous-15, types, synthesis and its applications towards biorefinery production. Am. J. Appl. Sci. 2010, 7, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.F.; Jin, H.X.; Chen, M.; Jin, D.F.; Hong, B.; Ge, H.L.; Gong, J.; Peng, X.L.; Yang, H.; Liu, Z.Y.; et al. Microstructure and Magnetic Properties of Highly Ordered SBA-15 Nanocomposites Modified with Fe2O3 and CO3O4 Nanoparticles. J. Nanomater. 2012, 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Tadic, M.; Kusigerski, V.; Markovic, D.; Panjan, M.; Sevi, I.M.; Spasojevic, V. Highly crystalline superparamagnetic iron oxide nanoparticles (SPION) in a silica matrix. J. Alloys Compd. 2012, 525, 28–33. [Google Scholar] [CrossRef]
- Carta, D.; Corrias, A.; Navarra, G. An X-ray absorption spectroscopy study of FeCo alloy nanoparticles embedded in ordered cubic mesoporous silica (SBA-16). J. NonCryst. Solids 2011, 357, 2611–2614. [Google Scholar] [CrossRef]
- Dias, D.F.; Braga, T.P.; Soares, J.M.; Sasaki, J.M. Structural, Morphological and Magnetic Properties of FeCo-(Fe,Co)3O4 Nanocomposite Synthesized by Proteic Sol-Gel Method Using a Rotary Oven. Mater. Res. 2019, 22, 20180446. [Google Scholar] [CrossRef]
- Braga, T.P.; Dias, D.F.; de Sousa, M.F.; Soares, J.M.; Sasaki, J.M. Synthesis of air stable FeCo alloy nanocrystallite by proteic sol–gelmethod using a rotary oven. J. Alloys Compd. 2015, 622, 408–417. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Meng, J. A facile co-gelation route to synthesize FeCo/Carbon nanocomposite and their application as magnetically separable adsorber. J. Alloys Compd. 2011, 509, 585–589. [Google Scholar] [CrossRef]
- Jia, C.; Zhao, J.; Lei, L.; Kang, X.; Lu, R.; Chen, C.; Li, S.; Zhao, Y.; Yang, Q.; Chen, Z. Novel magnetically separable anhydridefunctionalized Fe3O4@SiO2@PEI-NTDA nanoparticles as effective adsorbents: Synthesis, stability and recyclable adsorption performance for heavy metal ions. RSC Adv. 2019, 9, 9533. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Lu, F.; Zhu, J.; Li, M.; Zhu, J.; Shan, Y. Hydrodeoxygenation of methyl stearate as a model compound over Mo2C supported on mesoporous carbon. React. Kinet. Mech. Catal. 2015, 115, 251–262. [Google Scholar] [CrossRef]
- DeAngelis, M.T.; Rondinone, A.J.; Pawel, M.D.; Labotka T., C.; Anovitz, L.M. Sol-gel synthesis of nanocrystalline fayalite (Fe2SiO4). Am. Mineral. 2012, 97, 653. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, C.; Liu, C.; Li, K.; Yun, Y.; Cheruvathur, A.V.; Yang, Y.; Li, Y. Facile Large-Scale Synthesis of Nanoscale Fayalite, Fe2SiO4. ChemistrySelect 2017, 2, 3356–3361. [Google Scholar] [CrossRef]
- Zhang, C.; Wand, H.; Yang, Y.; Xiang, H.; Li, Y. Study on the iron-silica interaction of a co-precipitated Fe/SiO2 fischer-tropsch synthesis catalyst. Catal. Commun. 2006, 7, 733–738. [Google Scholar] [CrossRef]
- Braga, T.P.; Sales, B.M.C.; Pinheiro, A.N.; Herrera, W.T.; Baggio-Saitovitch, E.; Valentini, A. Catalytic properties of cobalt and nickel ferrites dispersed in mesoporous silicon oxide for ethylbenzene dehydrogenation with CO2. Catal. Sci. Technol. 2011, 1, 1383–1392. [Google Scholar] [CrossRef]
- Soares, M.C.B.; Barbosa, F.F.; Torres, M.A.M.; Valentini, A.; Albuquerque, A.R.; Sambrano, J.R.; Pergher, S.B.C.; Essayem, N.; Braga, T.P. Oxidative dehydrogenation of ethylbenzene to styrene over the CoFe2O4-MCM-41 catalyst: Preferential adsorption on the O2−Fe3+O2− sites located at octahedral positions. Catal. Sci. Technol. 2019, 9, 2469. [Google Scholar] [CrossRef]
- Daza, L.; Fierro, J.L.G.; Anderson, J.A. Regeneration of Ni-USY catalysts used in benzene hydrogenation. Appl. Catal. A 1996, 145, 307–332. [Google Scholar]
- Braga, T.P.; Pinheiro, A.N.; Teixeira, C.V.; Valentini, A. Dehydrogenation of ethylbenzene in the presence of CO2 using a catalystsynthesized by polymeric precursor method. Appl. Catal. A Gen. 2009, 366, 193–200. [Google Scholar] [CrossRef]
- Said, S. Synthesis and functionalization of ordered mesoporous carbons supported Pt nanoparticles for hydroconversion of n-heptane. N. J. Chem. 2018, 42, 14517. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, C.; Dai, Q.; Su, C. Facile synthesis and lithium storage properties of engineered ultrafine porous Fe2SiO4/C composites. J. Electroanal. Chem. 2017, 807, 29–36. [Google Scholar] [CrossRef]
- Jing, P.; Du, J.; Wang, J.; Zhu, Z.; Feng, H.; Liu, Z.; Liu, Q. Synthesis, microstructure and magnetic performance of FeCo alloy nanoribbons. Mater. Lett. 2016, 162, 176–179. [Google Scholar] [CrossRef]
- Li, M.; Dong, P.; Zhang, Y. Facile design and synthesis of ultrafine FeCo nanocrystallines coupled with porous carbon nanosheets as high efficiency non-enzymatic glucose sensor. J. Alloys Compd. 2019, 810, 151927. [Google Scholar] [CrossRef]
- Arelaro, A.D.; Rossi, L.M.; Rechenberg, H.R. ; In-field Mössbauer characterization of MFe2O4 (M=Fe, Co, Ni) nanoparticles. J. Phys. Conf. Ser. 2010, 217, 012126. [Google Scholar] [CrossRef]
- Maklakov, S.S.; Lagarkov, A.N. Mossbauer study of disordering in thin sputtered FeCo-SiO2 and FeCO films. J. Alloys Compd. 2012, 536, 33–37. [Google Scholar] [CrossRef]
- Dachs, E.; Geiger, C.A.; Seckendorff, V.V.; Grodzicki, M. A low-temperature calorimetric study of synthetic (forsterite + fayalite) {(Mg2SiO4+Fe2SiO4)} solid solutions: An analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. J. Chem. Thermodyn. 2007, 39, 906–933. [Google Scholar] [CrossRef]
- Sepelák, V.; Becker, K.D. Mechanosynthesis of nanocrystalline fayalite, Fe2SiO4. Chem. Commun. 2012, 48, 11121–11123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azadmanjiri, J.; Cashion, J.D. Phase reduction of coated maghemite (γ-Fe2O3) nanoparticles under microwave-induced plasma heating for rapid heat treatment. Mater. Chem. 2012, 22, 617. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Zhao, H.; Yang, J.; Zhao, J.; Yan, L.; Song, H.; Chou, L. The catalytic dehydrogenation of isobutane and the stability enhancement over Fe incorporated SBA-15. Microporous Mesoporous Mater. 2018, 266, 117–125. [Google Scholar] [CrossRef]
- Chong, S.; Zhang, G.; Tian, H.; Zhao, H. Rapid degradation of dyes in water by magnetic Fe0/Fe3O4/graphene composites. J. Environ. Sci. 2016, 44, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.D.; Qiao, X.J.; Ren, Q.G.; Wan, X.; Li, W.C.; Sun, Z.G. Synthesis and microwave-absorbing properties of CO3Fe7@C core–shell nanostructure. Appl. Phys. A 2015, 120, 43–52. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Abubaker, S.; Manal, A.; Sharefa, A.; Fatima, A.; Mabroukah, A.A.; Mohammed, M.A. Removal of Methylene Blue from Aqueous Solutions using Nano-Magnetic Adsorbent Based on Zinc-Doped Cobalt Ferrite. Chem. Methodol. 2020, 4, 1–18. [Google Scholar]
- Hou, X.; Feng, J.; Ren, Y.; Fan, Z.; Zhang, M.C. Colloids and Surfaces A: Physicochemical and Engineering Aspects. J. Polym. Sci. Lett. Polym. Ed. 2010, 363, 1. [Google Scholar]
- Su, H.; Li, W.; Han, Y.; Liu, N. Magnetic carboxyl functional nanoporous polymer: Synthesis, characterization and its application for methylene blue adsorption. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gong, B.; Wang, G.M.; Zeng, C.P.; Yang, C.G.; Niu, Q.Y.; Niu, W.J.; Zhou, Y.; Liang, J. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. Hazard Mater. 2009, 164. [Google Scholar]
- Dinh, V.-P.; Tran, N.Q.; Le, N.-Q.-T.; Tran, Q.-H.; Nguyen, T.D.; Le, V.T. Facile synthesis of FeFe2O4 magnetic nanomaterial for removing methylene blue from aqueous solution. Prog. Nat. Sci. Mater. Int. 2020, in press. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Zou, L.; Li, B.; He, X.; Ren, Y.; Fan, Z. Synthesis of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue. J. Colloid Interface Sci. 2015, 438, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Doğan, M.; Özdemir, Y.; Alkan, M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dye. Pigment. 2007, 75, 701–713. [Google Scholar] [CrossRef]
- Wang, N.; Feng, J.; Chen, J.; Wang, J.; Yan, W. Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater. Chem. Eng. J. 2017, 316, 33–40. [Google Scholar] [CrossRef]
- Mukherjee, K.; Kedia, A.; Jagajjanani Rao, K.; Dhir, S.; Paria, S. Adsorption enhancement of methylene blue dye at kaolinite clay–water interface influenced by electrolyte solutions. RSC Adv. 2015, 5, 30654–30659. [Google Scholar] [CrossRef]
- Yuan, N.; Cai, H.; Liu, T.; Huang, Q.; Zhang, X. Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorpt. Sci. Technol. 2019, 37, 333–348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, Y.; Wu, T.; Sun, D.; Chen, W.; Zhou, X. Magnetic iron oxide/graphene oxide nanocomposites: Formation and interaction mechanism for efficient removal of methylene blue and p-tert-butylphenol from aqueous solution. Mater. Chem. Phys. 2018, 205, 240–252. [Google Scholar] [CrossRef]
- Wysocka, I.; Kowalska, E.; Zielinska-Jurek, Anna. UV-Vis-Induced Degradation of Phenol over Magnetic Photocatalysts Modified with Pt, Pd, Cu and Au Nanoparticles. Nanomaterials 2018, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A.; Sakthivel, A.; Moss, T.S.; Paiva-Santos, C.O. DBWS-9411-an upgrade of the DBWS programs for Rietveld refinement with PC and mainframe computers. J. Appl. Crystallogr. 1995, 28, 366. [Google Scholar] [CrossRef]
- Meima, G.; Menon, P. Catalyst deactivation phenomena in styrene production. Appl. Catal. A Gen. 2001, 212, 239–245. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR; Los Almos National Laboratory: Los Almos, NM, USA, 2004; Volume 86, p. 748. [Google Scholar]
- Toby, B.H.; International Union of Crystallography. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar]
- Azaroff, L.V. Elements of X-ray Crystallography; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Phase Percentage (%) | Crystallite Size (nm) | ||
---|---|---|---|---|
Fe7Co3 | Fe2SiO4 | Fe7Co3 (44°) ** | Fe2SiO4 (35°) ** | |
Fe2SiO4-Fe7Co3-SBA-15-690-2.0 * | 23 | 71 | 17 | 12 |
Fe2SiO4-Fe7Co3-SBA-15-700-2.0 | 42 | 58 | 16 | 15 |
Fe2SiO4-Fe7Co3-SBA-15-710-2.0 | 44 | 56 | 15 | 16 |
Fe2SiO4-Fe7Co3-SBA-15-720-2.0 | 77 | 23 | 14 | 16 |
Fe2SiO4-Fe7Co3-SBA-15-700-0.5 | 15 | 85 | 16 | 14 |
Fe2SiO4-Fe7Co3-SBA-15-700-1.0 | 21 | 79 | 14 | 10 |
Fe2SiO4-Fe7Co3-SBA-15-700-1.5 | 27 | 73 | 20 | 19 |
Sample | SBET [m²/g] | VMP [cm³/g] | VMPP [cm³/g] | VTP [cm³/g] P/P0 = 0.98 |
---|---|---|---|---|
SBA-15 | 640 | 0.03 | 0.81 | 0.95 |
Fe2SiO4-SBA-15 | 510 | 0.01 | 0.56 | 0.69 |
Fe7Co3-SBA-15 | 420 | 0.01 | 0.54 | 0.67 |
Fe2SiO4-Fe7Co3-SBA-15-690-2.0 | 430 | 0.01 | 0.52 | 0.65 |
Fe2SiO4-Fe7Co3-SBA-15-720-2.0 | 460 | 0.01 | 0.55 | 0.68 |
Fe2SiO4-Fe7Co3-SBA-15-700-0.5 | 435 | 0.01 | 0.52 | 0.64 |
Fe2SiO4-Fe7Co3-SBA-15-700-2.0 | 435 | 0.01 | 0.54 | 0.66 |
Material | q (mg/g) | Reference |
---|---|---|
Fe2SiO4-Co7Fe3-SBA-15-700-2.0 | 49 | Present study |
Zinc-doped cobalt ferrite | 27.79 | [60] |
MnFe2O4 | 20.7 | [61] |
Magnetic carboxyl functional nanoporous | 57.74 | [62] |
Magnetic MWCNT nanocomposite | 15.74 | [63] |
FeFe2O4 | 42.35 | [64] |
ZnO/ZnFe2O4 | 32.27 | [65] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.T.P.; Barbosa, F.F.; Morales Torre, M.A.; Villarroel-Rocha, J.; Sapag, K.; Pergher, S.B.C.; Braga, T.P. Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent. Molecules 2020, 25, 1016. https://doi.org/10.3390/molecules25041016
da Silva MTP, Barbosa FF, Morales Torre MA, Villarroel-Rocha J, Sapag K, Pergher SBC, Braga TP. Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent. Molecules. 2020; 25(4):1016. https://doi.org/10.3390/molecules25041016
Chicago/Turabian Styleda Silva, Monickarla Teixeira Pegado, Felipe Fernandes Barbosa, Marco Antonio Morales Torre, Jhonny Villarroel-Rocha, Karim Sapag, Sibele B. C. Pergher, and Tiago Pinheiro Braga. 2020. "Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent" Molecules 25, no. 4: 1016. https://doi.org/10.3390/molecules25041016
APA Styleda Silva, M. T. P., Barbosa, F. F., Morales Torre, M. A., Villarroel-Rocha, J., Sapag, K., Pergher, S. B. C., & Braga, T. P. (2020). Synthesis of Fe2SiO4-Fe7Co3 Nanocomposite Dispersed in the Mesoporous SBA-15: Application as Magnetically Separable Adsorbent. Molecules, 25(4), 1016. https://doi.org/10.3390/molecules25041016