# Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Raw Materials and Test Methods

#### 2.1. Raw Materials

#### 2.2. Test Methods

## 3. Test Results and Discussion

#### 3.1. Rheological Model Analysis of PVA-Modified Cement Mortar

#### 3.2. Effect of PVA Chemical Structure on the Yield Stress of Cement Mortar

#### 3.3. Effect of Chemical Structure of PVA on the Plastic Viscosity of Cement Mortar

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Demerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol.
**2003**, 41, 319–326. [Google Scholar] [CrossRef] - Kim, J.H.; Robertson, R.E. Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone. Adv. Cem. Based Mater.
**1998**, 8, 66–76. [Google Scholar] [CrossRef] - Kim, J.H.; Robertson, R.E.; Naaman, A.E. Structure and properties of poly(vinyl alcohol)- modified mortar and concrete. Cem. Concr. Res.
**1999**, 29, 407–415. [Google Scholar] [CrossRef] - Kou, S.C.; Poon, C.S. Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. Cem. Concr. Compos.
**2010**, 32, 649–654. [Google Scholar] [CrossRef] - Chai, W.W.S.; Teo, D.C.L.; Ng, C.K. Improving the properties of oil palm shell (OPS) concrete using polyvinyl alcohol (PVA) coated aggregates. Adv. Mater. Res.
**2014**, 970, 147–152. [Google Scholar] [CrossRef] - Mannan, M.A.; Alexander, J.; Ganapathy, C.; Teo, D.C.L. Quality improvement of oil palm shell (OPS) as coarse aggregate in lightweight concrete. Build. Environ.
**2006**, 41, 1239–1242. [Google Scholar] [CrossRef] - Ahmed, S.F.U.; Mihashi, H. Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites. Mater. Struct.
**2011**, 44, 1179–1191. [Google Scholar] [CrossRef] - Zhang, Y.; Zhang, Z.; Liu, Z. Graphite coated PVA fibers as the reinforcement for cementitious composites. Mater. Res. Express.
**2018**, 5, 025206. [Google Scholar] [CrossRef] - Hu, W.; Yang, X.; Zhou, J.; Xing, H. Experimental research on the mechanical properties of PVA fiber reinforced concrete. Res. J. Appl. Sci. Eng. Technol.
**2013**, 5, 4563–4567. [Google Scholar] [CrossRef] - Zanotti, C.; Borges, P.H.R.; Bhutta, A.; Banthia, N. Bond strength between concrete substrate and metakaolin geopolymer repair mortar: Effect of curing regime and PVA fiber reinforcement. Cem. Concr. Compos.
**2017**, 80, 307–316. [Google Scholar] [CrossRef] - Mansur, A.A.P.; Santos, D.B.; Mansur, H.S. A microstructural approach to adherence mechanism of poly(vinyl alcohol) modified cement systems to ceramic tiles. Cem. Concr. Res.
**2007**, 37, 270–282. [Google Scholar] [CrossRef] - Singh, N.B.; Rai, S. Effect of polyvinyl alcohol on the hydration of cement with rice husk ash. Cem. Concr. Res.
**2001**, 31, 239–243. [Google Scholar] [CrossRef] - Mansur, A.A.P.; Mansur, H.S. Surface interactions of chemically active ceramic tiles with polymer-modified mortars. Cem. Concr. Compos.
**2011**, 33, 742–748. [Google Scholar] [CrossRef] - Kim, J.H.; Robertson, R.E. Prevention of air void formation in polymer-modified cement mortar by pre-wetting. Cem. Concr. Res.
**1997**, 27, 171–176. [Google Scholar] [CrossRef] - Allahverdi, A.; Kianpur, K.; Moghbeli, M.R. Effect of polyvinyl alcohol on flexural strength and some important physical properties of Portland cement paste. Iran. J. Mater. Sci. Eng.
**2010**, 7, 1–6. [Google Scholar] - Nguyen, D.D.; Devlin, L.P.; Koshy, P.; Sorrell, C.C. Effect of polyvinyl alcohol on rheology of portland cement pastes. J. Aust. Ceram. Soc.
**2015**, 51, 23–28. [Google Scholar] - Nguyen, D.D.; Devlin, L.P.; Koshy, P.; Sorrell, C.C. Effects of chemical nature of polyvinyl alcohol on early hydration of Portland cement. J. Therm. Anal. Calorim.
**2016**, 123, 1439–1450. [Google Scholar] [CrossRef] - Georgescu, M.; Puri, A.; Coarna, M.; Viocu, G.; Voinitchi, D. Thermoanalytical and infrared spectroscopy investigations of some mineral pastes containing organic polymers. Cem. Concr. Res.
**2002**, 32, 1269–1275. [Google Scholar] [CrossRef] - Pique, T.M.; Vazquez, A. Control of hydration rate of polymer modified cements by the addition of organically modified montmorillonites. Cem. Concr. Res.
**2013**, 37, 54–60. [Google Scholar] [CrossRef] - Thong, C.C.; Teo, D.C.L.; Ng, C.K. Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Constr. Build. Mater.
**2016**, 107, 172–180. [Google Scholar] [CrossRef] - Wallevik, O.H.; Feys, D.; Wallevik, J.E.; Khayat, K.H. Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem. Concr. Res.
**2015**, 78, 100–109. [Google Scholar] - Nehdi, M.; Rahman, M.A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction. Cem. Concr. Res.
**2004**, 34, 1993–2007. [Google Scholar] - Feys, D.; Wallevik, J.E.; Yahia, A.; Khayat, K.H.; Wallevik, O.H. Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers. Mater. Struct.
**2013**, 46, 289–311. [Google Scholar] - Betioli, A.M.; Gleize, P.J.P.; John, V.M.; Pileggi, R.G. Effect of EVA on the fresh properties of cement paste. Cem. Concr. Compos.
**2012**, 34, 255–260. [Google Scholar] - Чepкинcкий, Ю·C. Polymer Cement Concrete; China Architecture & Building Press: Beijing, China, 1984. (In Chinese) [Google Scholar]
- Moukwa, M.; Youn, D.; Hassanali, M. Effects of degree of polymerization of water soluble polymers on concrete properties. Cem. Concr. Res.
**1993**, 23, 122–130. [Google Scholar] - Zhang, C.; Yuan, X.; Zhou, S. Effect of mineral admixtures and superplasticizer on rheological performance of cement based materials. Concrete
**2004**, 9, 43–46. (In Chinese) [Google Scholar] - Liang, N. Mechanism analysis of polymer modified cement and cement concrete. J. Xi’an Hwy. Univ.
**1995**, 15, 14–18. (In Chinese) [Google Scholar] - Zheng, S.; Niu, K.; Tian, B.; Chen, L.; Cheng, Z.; Xu, Y. Effect of Polymer Latex on Rheological Properties of Cement Mortar. J. Build. Mater.
**2017**, 20, 962–969. (In Chinese) [Google Scholar] - Marten, F.L. Vinyl alcohol polymers. In Kirk-Othmer Encyclopedia of Chemical Technology; Kroschwitz, J.I., Howe-Grant, M., Eds.; Wiley: New York, NY, USA, 2002; Volume 24, pp. 980–1017. [Google Scholar]
- Yu, Z. Study on foaming mechanism of partially alcoholized polyvinyl alcohol in solution. Cotton Text. Technol.
**1982**, 9, 22–26. (In Chinese) [Google Scholar]

Sample Availability: Not available. |

**Figure 2.**Regression flow curves of different PVA-modified cement mortar: (

**a**) PVA 105, (

**b**) PVA 205, (

**c**) PVA 1799, (

**d**) PVA 1788, (

**e**) PVA 224.

**Figure 3.**The effect of degree of polymerization and content of PVA on yield stress of cement mortar.

**Figure 5.**The effect of degree of polymerization and content of PVA on plastic viscosity of cement mortar.

**Figure 6.**The effect of degree of hydrolysis and content of PVA on plastic viscosity of cement mortar.

CaO | SiO_{2} | Al_{2}O_{3} | Fe_{2}O_{3} | SO_{3} | MgO | Na_{2}O |
---|---|---|---|---|---|---|

61.30 | 21.43 | 5.30 | 2.91 | 2.51 | 2.18 | 0.72 |

Loss on Ignition/% | Initial Setting Time/min | Final Setting Time/min | Specific Surface Area/m^{2}⋅kg^{−1} | Flexural Strength/MPa | Compressive Strength/MPa | ||
---|---|---|---|---|---|---|---|

3.65 | 178 | 240 | 350 | 3 d | 28 d | 3 d | 28 d |

6.3 | 8.2 | 32.5 | 54.3 |

**Table 3.**Degrees of hydrolysis (DH) and degrees of polymerization (DP) of polyvinyl alcohol (PVA) used.

PVA | DP | Molecular Weight | DH |
---|---|---|---|

105 | 500 | 22,000 | 99% |

205 | 500 | 22,000 | 88% |

1788 | 1700 | 74,800 | 88% |

1799 | 1700 | 74,800 | 99% |

224 | 2400 | 105,600 | 88% |

PVA | Heating Temperature/°C | Time/h |
---|---|---|

105 | 70 | 1.5 |

205 | 70 | 1.5 |

1788 | 90 | 2.5 |

1799 | 95 | 3.0 |

224 | 95 | 3.0 |

Sample | Yield Stress/Pa | Plastic Viscosity/(Pa·s) | Regression Equation | R^{2} |
---|---|---|---|---|

0 | 161.64 | 2.02 | $\tau =161.64+2.02\dot{\gamma}+0.181{\dot{\gamma}}^{2}$ | 0.984 |

105-0.5 | 119.35 | 7.06 | $\tau =119.35+7.06\dot{\gamma}-0.084{\dot{\gamma}}^{2}$ | 0.997 |

105-1.0 | 150.57 | 10.97 | $\tau =150.57+10.97\dot{\gamma}-0.235{\dot{\gamma}}^{2}$ | 0.991 |

105-1.5 | 180.62 | 13.76 | $\tau =180.62+13.76\dot{\gamma}-0.200{\dot{\gamma}}^{2}$ | 0.997 |

105-2.0 | 172.99 | 19.30 | $\tau =172.99+19.30\dot{\gamma}-0.361{\dot{\gamma}}^{2}$ | 0.986 |

205-0.5 | 137.52 | 8.06 | $\tau =137.52+8.06\dot{\gamma}-0.88{\dot{\gamma}}^{2}$ | 0.997 |

205-1.0 | 172.13 | 9.70 | $\tau =172.13+9.70\dot{\gamma}+0.054{\dot{\gamma}}^{2}$ | 0.998 |

205-1.5 | 161.88 | 12.99 | $\tau =161.88+12.99\dot{\gamma}-0.141{\dot{\gamma}}^{2}$ | 0.994 |

205-2.0 | 170.93 | 18.65 | $\tau =170.93+18.65\dot{\gamma}-0.212{\dot{\gamma}}^{2}$ | 0.995 |

1799-0.5 | 249.30 | 8.03 | $\tau =249.30+8.03\dot{\gamma}-0.104{\dot{\gamma}}^{2}$ | 0.981 |

1799-1.0 | 184.10 | 18.91 | $\tau =184.10+18.91\dot{\gamma}-0.287{\dot{\gamma}}^{2}$ | 0.997 |

1799-1.5 | 349.32 | 34.17 | $\tau =349.32+34.17\dot{\gamma}-0.427{\dot{\gamma}}^{2}$ | 0.988 |

1788-0.5 | 175.89 | 10.01 | $\tau =175.89+10.01\dot{\gamma}+0.075{\dot{\gamma}}^{2}$ | 0.999 |

1788-1.0 | 189.71 | 16.79 | $\tau =189.71+16.79\dot{\gamma}-0.052{\dot{\gamma}}^{2}$ | 0.995 |

1788-1.5 | 215.47 | 32.33 | $\tau =215.47+32.33\dot{\gamma}-0.411{\dot{\gamma}}^{2}$ | 0.983 |

1788-2.0 | 216.36 | 58.13 | $\tau =216.36+58.13\dot{\gamma}-1.156{\dot{\gamma}}^{2}$ | 0.998 |

224-0.5 | 214.29 | 11.02 | $\tau =214.29+11.02\dot{\gamma}+0.135{\dot{\gamma}}^{2}$ | 0.999 |

224-1.0 | 205.41 | 22.16 | $\tau =205.41+22.16\dot{\gamma}-0.247{\dot{\gamma}}^{2}$ | 0.996 |

224-1.5 | 328.93 | 73.14 | $\tau =328.93+73.14\dot{\gamma}-0.260{\dot{\gamma}}^{2}$ | 0.995 |

224-2.0 | 270.52 | 119.85 | $\tau =270.52+119.85\dot{\gamma}-4.212{\dot{\gamma}}^{2}$ | 0.997 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, F.; Wang, B.; Xing, Y.; Zhang, K.; Jiang, W.
Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar. *Molecules* **2020**, *25*, 754.
https://doi.org/10.3390/molecules25030754

**AMA Style**

Liu F, Wang B, Xing Y, Zhang K, Jiang W.
Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar. *Molecules*. 2020; 25(3):754.
https://doi.org/10.3390/molecules25030754

**Chicago/Turabian Style**

Liu, Fang, Baomin Wang, Yunqing Xing, Kunkun Zhang, and Wei Jiang.
2020. "Effect of Polyvinyl Alcohol on the Rheological Properties of Cement Mortar" *Molecules* 25, no. 3: 754.
https://doi.org/10.3390/molecules25030754