Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical Impedance Spectroscopy
(This article belongs to the Section Electrochemistry)
Abstract
:1. Introduction
2. Results
3. Experimental
3.1. Materials and Device Fabrication
3.2. Characterization of the PSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Leguy, A.M.A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M.I.; Weber, O.J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M.T.; Bein, T.; Nelson, J.; et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407. [Google Scholar] [CrossRef]
- Jiang, P.; Xiong, Y.; Xu, M.; Mei, A.; Sheng, Y.; Hong, L.; Jones, T.W.; Wilson, G.J.; Xiong, S.; Li, D.; et al. The influence of the work function of hybrid carbon electrodes on printable mesoscopic perovskite solar cells. J. Phys. Chem. C 2018, 122, 16481–16487. [Google Scholar] [CrossRef]
- Parida, B.; Ryu, J.; Yoon, S.; Lee, S.; Seo, Y.; Cho, J.S.; Kang, D.-W. Two-step growth of CsPbI3−xBrx films employing dynamic CsBr treatment: Toward all-inorganic perovskite photovoltaics with enhanced stability. J. Mater. Chem. A 2019, 7, 18488–18498. [Google Scholar] [CrossRef]
- Abbas, M.S.; Hussain, S.; Zhang, J.; Wang, B.; Yang, C.; Wang, Z.; Wei, Z.; Ahmad, R. Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustain. Energy Fuels 2020, 4, 324–330. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Kwon, S.-N.; Cho, S.-P.; Seo, Y.-H.; Choi, M.-J.; Kim, S.-S.; Na, S.-I. Antisolvent additive engineering containing dual-function additive for triple-cation p–i–n perovskite solar cells with over 20% PCE. ACS Energy Lett. 2020, 5, 2535–2545. [Google Scholar] [CrossRef]
- Meng, H.; Shao, Z.; Wang, L.; Li, Z.; Liu, R.; Fan, Y.; Cui, G.; Pang, S. Chemical composition and phase evolution in DMAI-derived inorganic perovskite solar cells. ACS Energy Lett. 2019, 5, 263–270. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Wang, Z.; Liu, Y.; Zhao, Z.; Xu, G.; Han, T.-H.; Lee, J.-W.; Chen, C.; Bao, D.; et al. Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy 2020, 69. [Google Scholar] [CrossRef]
- Targhi, F.F.; Jalili, Y.S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results Phys. 2018, 10, 616–627. [Google Scholar] [CrossRef]
- Ubaid, F.; Radwan, A.B.; Naeem, N.; Shakoor, R.; Ahmad, Z.; Montemor, M.; Kahraman, R.; Abdullah, A.M.; Soliman, A. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel. Surf. Coat. Technol. 2019, 372, 121–133. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [Green Version]
- Jeon, N.J.; Noh, J.H.; Yang, W.S.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Pellet, N.; Gao, P.; Gregori, G.; Yang, T.Y.; Nazeeruddin, M.K.; Maier, J.; Gratzel, M. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. Engl. 2014, 53, 3151–3157. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J.J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead Iodide solid-state alloys. Chem. Mater. 2015, 28, 284–292. [Google Scholar] [CrossRef]
- Singh, R.; Sandhu, S.; Yadav, H.; Lee, J.J. Stable triple-cation (Cs(+)-MA(+)-FA(+)) perovskite powder formation under ambient conditions for hysteresis-free high-efficiency solar cells. ACS Appl. Mater. Interfaces 2019, 11, 29941–29949. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Noma, T.; Paek, S.; Cho, K.T.; Taguchi, D.; Iwamoto, M.; Manaka, T.; Nazeeruddin, M.K.; Touati, F.; Al-Muhtaseb, S.A. Stability in 3D and 2D/3D hybrid perovskite solar cells studied by EFISHG and IS techniques under light and heat soaking. Org. Electron. 2019, 66, 7–12. [Google Scholar] [CrossRef]
- Cho, K.T.; Grancini, G.; Lee, Y.; Oveisi, E.; Ryu, J.; Almora, O.; Tschumi, M.; Schouwink, P.A.; Seo, G.; Heo, S.; et al. Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 2018, 11, 952–959. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, H.S. 3D/2D bilayerd perovskite solar cells with an enhanced stability and performance. Materials 2020, 13, 3868. [Google Scholar] [CrossRef]
- Grancini, G.; Roldan-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 15684. [Google Scholar] [CrossRef]
- Krishna, A.; Gottis, S.; Nazeeruddin, M.K.; Sauvage, F. Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells? Adv. Funct. Mater. 2019, 29. [Google Scholar] [CrossRef]
- Yao, D.; Zhang, C.; Zhang, S.; Yang, Y.; Du, A.; Waclawik, E.; Yu, X.; Wilson, G.J.; Wang, H. 2D-3D mixed organic-inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives. ACS Appl. Mater. Interfaces 2019, 11, 29753–29764. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, Q.; Chmiel, F.P.; Sakai, N.; Herz, L.M.; Snaith, H.J. Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2017, 2. [Google Scholar] [CrossRef]
- Zou, Y.; Cui, Y.; Wang, H.Y.; Cai, Q.; Mu, C.; Zhang, J.P. Highly efficient and stable 2D-3D perovskite solar cells fabricated by interfacial modification. Nanotechnology 2019, 30, 275202. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Zhou, L.; Lin, Z.; Ning, Z.; Li, T.; Guo, X.; Ma, J.; Su, J.; Zhang, C.; Zhang, J.; Liu, S.; et al. Highly efficient and stable planar perovskite solar cells with modulated diffusion passivation toward high power conversion efficiency and ultrahigh fill factor. Sol. RRL 2019, 3. [Google Scholar] [CrossRef]
- Niu, T.; Lu, J.; Jia, X.; Xu, Z.; Tang, M.-C.; Barrit, D.; Yuan, N.; Ding, J.; Zhang, X.; Fan, Y.J.N.l. Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells. 2019, 19, 7181–7190. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, J.; Mi, Y.; Zhu, X.; Ren, H.; Liu, X.; Yan, Y. Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2. Appl. Surf. Sci. 2018, 436, 596–602. [Google Scholar] [CrossRef]
- Huang, X.; Bi, W.; Jia, P.; Tang, Y.; Lou, Z.; Hu, Y.; Cui, Q.; Hou, Y.; Teng, F. Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Org. Electron. 2019, 67, 101–108. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mishra, A.; Abdulrahim, S.; Taguchi, D.; Paek, S.; Aziz, F.; Iwamoto, M.; Manaka, T.; Nazeeruddin, K.; Touati, F.; et al. The consequence of aging at Au/HTM/Perovskite interface in triple cation 3D and 2D/3D hybrid perovskite solar cell. Sci. Rep. 2021, in press. [Google Scholar]
- Rizvi, S.M.H.; Mantri, P.; Mazhari, B. Traps signature in steady state current-voltage characteristics of organic diode. J. Appl. Phys. 2014, 115, 244502. [Google Scholar] [CrossRef]
- Hyun Kim, C.; Yaghmazadeh, O.; Bonnassieux, Y.; Horowitz, G. Modeling the low-voltage regime of organic diodes: Origin of the ideality factor. J. Appl. Phys. 2011, 110. [Google Scholar] [CrossRef] [Green Version]
- Klotz, D.; Tumen-Ulzii, G.; Qin, C.; Matsushima, T.; Adachi, C. Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy. RSC Adv. 2019, 9, 33436–33445. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Bian, J.; Wang, S.; Zhang, C.; Wang, M.; Shi, Y. Soft interfaces within hybrid perovskite solar cells: Real-time dynamic tracking of interfacial electrical property evolution by EIS. J. Mater. Chem. C 2019, 7, 8294–8302. [Google Scholar] [CrossRef]
- Bag, M.; Renna, L.A.; Jeong, S.P.; Han, X.; Cutting, C.L.; Maroudas, D.; Venkataraman, D. Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers. Chem. Phys. Lett. 2016, 662, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Pockett, A.; Eperon, G.E.; Peltola, T.; Snaith, H.J.; Walker, A.; Peter, L.M.; Cameron, P.J. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 2015, 119, 3456–3465. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, A.; Garcia-Belmonte, G.; Mora-Sero, I.; Bisquert, J.; Kang, Y.S.; Jacobsson, T.J.; Correa-Baena, J.-P.; Hagfeldt, A. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C 2016, 120, 8023–8032. [Google Scholar] [CrossRef] [Green Version]
- Zarazua, I.; Sidhik, S.; Lopéz-Luke, T.; Esparza, D.; De la Rosa, E.; Reyes-Gomez, J.; Mora-Sero, I.; Garcia-Belmonte, G. Operating mechanisms of mesoscopic perovskite solar cells through impedance spectroscopy and J–V modeling. J. Phys. Chem. Lett. 2017, 8, 6073–6079. [Google Scholar] [CrossRef]
- Romero, B.; del Pozo, G.; Arredondo, B.; Martín-Martín, D.; Hernández-Balaguera, E.; González, M.d.C.L. Characterization of organic and perovskite solar cells by impedance spectroscopy. In Women in Renewable Energy (WiRE); International Society for Optics and Photonics: Bellingham, WA, USA, 2019; p. 110950N. [Google Scholar]
- Gedamu, D.; Asuo, I.M.; Benetti, D.; Basti, M.; Ka, I.; Cloutier, S.G.; Rosei, F.; Nechache, R. Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Del Pozo, G.; Arredondo, B.; Romero, B.; Susanna, G.; Brunetti, F. Degradation of PEIE interlayer in PTB7:[70] PCBM based solar cells characterized by impedance spectroscopy. Sol. Energy 2017, 144, 105–110. [Google Scholar] [CrossRef]
- Chen, P.; Bai, Y.; Wang, S.; Lyu, M.; Yun, J.H.; Wang, L. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1706923. [Google Scholar] [CrossRef]
- Liu, B.; Long, M.; Cai, M.; Ding, L.; Yang, J. Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells. Nano Energy 2019, 59, 715–720. [Google Scholar] [CrossRef]
Sample Availability: Data can be provided on the reasonable request to the corresponding author. |
Sample | Jsc, (mA/cm2) | Voc, (V) | FF | Efficiency (%) | Ideality Factor (n) | |
---|---|---|---|---|---|---|
3D | 1st cycle | 22.96 | 1.09 | 78.17 | 19.44 | 2.03 ± 0.13 |
2nd cycle | 8.51 | 0.98 | 57.08 | 4.75 | 5.78 ± 0.040 | |
3rd cycle | 6.44 | 0.97 | 43.61 | 2.71 | 6.78 ± 0.091 | |
2D/3D | 1st cycle | 23.08 | 1.1 | 79.68 | 20.23 | 2.08 ± 0.22 |
2nd cycle | 15.32 | 1.01 | 54.14 | 8.10 | 8.28 ± 0.004 | |
3rd cycle | 13.71 | 0.98 | 50.34 | 6.83 | 8.99 ± 0.091 |
Sample | Slope (m) | |||
---|---|---|---|---|
Region I | Region II | Region III | Region IV | |
3D | 1.22 ± 0.02 | 1.37 ± 0.01 | 5.56 ± 0.11 | N/A |
2D/3D | 1.19 ± 0.026 | 1.16 ± 0.0041 | 3.20 ± 0.007 | 2.91 ± 0.021 |
3RC | ||||||||||
Sample | Time Period | Rs | Ls | HF Region (Charge Transfer) | IF/LF Region (Recombination) | Goodness of Fit | ||||
(Ω) | (H) | Rct (Ω) | act (10−3) | Yct (10−6) | Rrec (Ω) | arec (10−3) | Yrec (10−6) | |||
1st cycle | 8.78 ± 0.22 | - | 3.03 × 103 | 978 | 0.064 | 2.48 × 106 | 844 | 2.91 | 7.35 × 10−3 | |
3D | 2nd cycle | 16.0 ± 0.44 | - | 1.37 × 104 | 989 | 0.138 | 1.52 × 105 | 718 | 2.80 | 7.87 × 10−3 |
3rd cycle | 17.70 ± 0.31 | - | 1.51 × 104 | 970 | 0.176 | 7.65 × 104 | 801 | 3.44 | 4.24 × 10−3 | |
1st cycle | 12.59 ± 0.26 | - | 1.96 × 103 | 977 | 0.073 | 4.79 × 106 | 910 | 2.55 | 4.33 × 10−3 | |
2D/3D | 2nd cycle | 28.25 ± 0.45 | - | 1.03 × 104 | 969 | 0.068 | 1.48 × 106 | 859 | 2.15 | 1.65 × 10−3 |
3rd cycle | 36.91 ± 0.57 | - | 1.39 × 104 | 955 | 0.317 | 3.72 × 105 | 783 | 2.15 | 1.88 × 103 | |
3RC-BTO | ||||||||||
Sample | Time Period | Rs | Ls | HF Region (Charge Transfer) | IF/LF Region (Recombination) | Goodness of Fit | ||||
(Ω) | (H) | Rct (Ω) | act (10−3) | Yct (10−6) | Rrec(Ω) | arec (10−3) | Yrec (10−6) | |||
1st cycle | 8.27 ± 0.26 | - | 3.20 × 103 | 959 | 0.121 | 2.42 × 106 | 853 | 2.83 | 16.7 × 10−3 | |
3D | 2nd cycle | 16.03 ± 0.96 | - | 8.72 × 103 | 963 | 0.130 | 1.02 × 105 | 914 | 3.31 | 1.84 × 10−3 |
3rd cycle | 18.12 ± 0.43 | - | 1.42 × 104 | 948 | 0.138 | 7.36 × 104 | 749 | 3.25 | 3.59 × 10−3 | |
1st cycle | 12.80 ± 0.26 | - | 2.07 × 103 | 991 | 0.069 | 4.00 × 106 | 921 | 2.48 | 3.54 × 10−3 | |
2D/3D | 2nd cycle | 28.5 ± 0.51 | - | 8.27 × 103 | 991 | 0.19 | 1.45 × 106 | 870.5 | 2.16 | 1.31 × 10−3 |
3rd cycle | 36.92 ± 0.89 | - | 1.34 × 104 | 977 | 0.25 | 3.78 × 105 | 776 | 2.17 | 1.90 × 10−3 | |
Ls-3RC-BTO | ||||||||||
Sample | Period | Rs | Ls | HF Region (Charge Transfer) | IF/LF Region (Recombination) | Goodness of Fit | ||||
(Ω) | (H) | Rct (Ω) | act (10−3) | Yct (10−6) | Rrec (Ω) | arec (10−3) | Yrec (10−6) | |||
1st cycle | 7.66 ± 0.72 | 1.28 × 10−6 | 3.35 × 103 | 890 | 0.268 | 2.38 × 106 | 821 | 3.9 | 1.08 × 10−3 | |
3D | 2nd cycle | 16.0 ± 0.82 | 1.12 × 10−6 | 1.06 × 104 | 874 | 0.192 | 1.37 × 105 | 872 | 4.8 | 4.85 × 10−3 |
3rd cycle | 16.94 ± 0.63 | 1.17 × 10−6 | 1.51 × 104 | 953 | 0.324 | 7.56 × 104 | 783 | 3.61 | 2.57 × 10−4 | |
1st cycle | 11.98 ± 0.51 | 7.88 × 10−7 | 2.17 × 103 | 963 | 0.086 | 4.06 × 106 | 922 | 2.49 | 1.36 × 10−4 | |
2D/3D | 2nd cycle | 27.75 ± 0.62 | 1.38 × 10−6 | 1.05 × 104 | 956 | 0.076 | 1.46 × 106 | 861 | 2.15 | 2.41 × 10−4 |
3rd cycle | 36.22 ± 0.87 | 1.31 × 10−6 | 1.30 × 104 | 962 | 0.268 | 3.80 × 105 | 766 | 2.21 | 5.25 × 10−4 |
Sample | fp (Hz) | ||
---|---|---|---|
1st Cycle | 2nd Cycle | 3rd Cycle | |
3D | 198.6 | 31.3 | 26.8 |
2D/3D | 252.6 | 79 | 34.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrahim, S.M.; Ahmad, Z.; Bhadra, J.; Al-Thani, N.J. Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical Impedance Spectroscopy. Molecules 2020, 25, 5794. https://doi.org/10.3390/molecules25245794
Abdulrahim SM, Ahmad Z, Bhadra J, Al-Thani NJ. Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical Impedance Spectroscopy. Molecules. 2020; 25(24):5794. https://doi.org/10.3390/molecules25245794
Chicago/Turabian StyleAbdulrahim, Sumayya M., Zubair Ahmad, Jolly Bhadra, and Noora Jabor Al-Thani. 2020. "Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical Impedance Spectroscopy" Molecules 25, no. 24: 5794. https://doi.org/10.3390/molecules25245794
APA StyleAbdulrahim, S. M., Ahmad, Z., Bhadra, J., & Al-Thani, N. J. (2020). Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical Impedance Spectroscopy. Molecules, 25(24), 5794. https://doi.org/10.3390/molecules25245794