Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches
Abstract
:1. Introduction
2. Skin Anatomy and Wound Healing
3. Triterpenes with Wound Healing Effects: Mechanism of Action
3.1. Lupane-Type Triterpenes
3.1.1. Betulinic Acid and Betulin
3.1.2. Lupeol
3.2. Ursane-Type Triterpenes
3.2.1. Asiaticoside
3.2.2. Asiatic Acid
3.2.3. Madecassoside
3.3. Oleanane-Type Triterpenes
3.3.1. Oleanolic Acid
3.3.2. Glycyrrhizin
3.4. Dammarane-Type Triterpenoids
3.4.1. Ginsenosides
3.4.2. Bacosides
3.5. Lanostane-Type Triterpenes
Cycloastragenol
3.6. Cycloartane-Type Triterpene
3.7. Plant Extracts with Complex Composition
4. Innovative Formulations Containing Wound Healing Triterpenes
5. Clinical Trials
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Clark, R.A.F. Wound repair: Basic biology to tissue engineering. In Principles of Tissue Engineering, 4th ed.; Vacanti, R., Lanza, R., Langer, J., Eds.; Academic Press: London, UK, 2014; pp. 1595–1617. [Google Scholar]
- Nather, A. The Diabetic Foot; World Scientific Pub. Co. Pte. Lt.: Singapore, 2012; pp. 89–96. [Google Scholar]
- Leaper, D.J.; Harding, K.G. ABC of wound healing: Traumatic and surgical wounds. BMJ 2006, 332, 532–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoch, S.; Leaper, D.J. Basic science of wound healing. Surgery (Oxford) 2008, 26, 31–37. [Google Scholar] [CrossRef]
- Prakash, G.; Varma, S.; Malhotra, P. Prevention and Management of Infections. In Textbook of Systemic Vasculitis; Sharma, A., Ed.; Jaypee Brothers Medical Publishers: New Delhi, India, 2015; pp. 407–412. [Google Scholar]
- Jones, V.; Grey, J.E.; Harding, K.G. ABC of wound healing: Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Ather, S.; Harding, K.G. Wound management and dressings. In Advanced Textiles for Wound Care, 1st ed.; Rajendran, S., Ed.; Woodhead Publishing: Sawston, UK, 2009; pp. 3–19. [Google Scholar]
- Yang, R.; Wang, J.; Chen, X.; Shi, Y.; Xie, J. Epidermal stem cells in wound healing and regeneration. Stem Cells Int. 2020, 2020, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Thakur, R.; Jain, N.; Pathak, R.; Sandhu, S.S. Practices in wound healing studies of plants. Evid. Based Complement. Altern. Med. 2011, 2011, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Shedoeva, A.; Leavesley, D.; Upton, Z.; Fan, C. Wound healing and the use of medicinal plants. Evid. Based Complement. Altern. Med. 2019, 2019, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Isah, M.B.; Tajuddeen, N.; Umar, M.I.; AlHafiz, Z.A.; Mohammed, A.; Ibrahim, M.A. Terpenoids as emerging therapeutic agents: Cellular targets and mechanisms of action against protozoan parasites. In Bioactive Natural Products (Part O); Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 59, pp. 227–250. [Google Scholar]
- Furtado, N.A.J.C.; Pirson, L.; Edelberg, H.; Miranda, L.M.; Loira-Pastoriza, C.; Préat, V.; Larondelle, Y.; Andre, C.M. Pentacyclic triterpene bioavailability: An overview of in vitro and in vivo studies. Molecules 2017, 22, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paduch, R.; Kandefer-Szerszeń, M. Antitumor and antiviral activity of pentacyclic triterpenes. Mini-Rev. Org. Chem. 2014, 11, 262–268. [Google Scholar] [CrossRef]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as potentially cytotoxic compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Battineni, J.K.; Koneti, P.K.; Bakshi, V.; Boggula, N. Triterpenoids: A review. Int. J. Pharm. Pharm. Sci. 2018, 3, 91–96. [Google Scholar]
- Hill, R.A.; Connolly, J.D. Triterpenoids. Nat Prod Rep. 2017, 34, 90–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agra, L.C.; Ferro, J.N.S.; Barbosa, F.T.; Barreto, E. Triterpenes with healing activity: A systematic review. J. Dermatol. Treat. 2015, 26, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Eckes, B.; Krieg, T.; Niessen, C.M. Biology of the skin. In A Worldwide Perspective on Therapeutic Approaches and Their Molecular Basis, 1st ed.; Krieg, T., Bickers, D.R., Miyachi, Y., Eds.; Springer: Berlin, Germany, 2010; pp. 3–14. [Google Scholar]
- Nafisi, S.; Maibach, H.I. Skin penetration of nanoparticles. In Emerging Nanotechnologies in Immunology: The Design, Applications and Toxicology of Nanopharmaceuticals and Nanovaccines, 1st ed.; Shegokar, R., Souto, E.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 47–88. [Google Scholar]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.-C.; Wong, J.K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 2015, 25, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shpichka, A.; Butnaru, D.; Bezrukov, E.A.; Sukhanov, R.B.; Atala, A.; Burdukovskii, V.; Zhang, Y.; Timashev, P. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.; McNaught, C.-E. The physiology of wound healing. Surgery (Oxford) 2011, 29, 475–479. [Google Scholar] [CrossRef]
- Basil, M.C.; Levy, B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Monaco, J.L.; Lawrence, W.T. Acute wound healing an overview. Clin. Plast. Surg. 2003, 30, 1–12. [Google Scholar] [CrossRef]
- Gonzalez, A.C.D.O.; Costa, T.F.; Andrade, Z.D.A.; Medrado, A.R.A.P. Wound healing-A literature review. An. Bras. Dermatol. 2016, 91, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limandjaja, G.C.; Niessen, F.B.; Scheper, R.J.; Gibbs, S. The Keloid disorder: Heterogeneity, histopathology, mechanisms and models. Front. Cell Dev. Biol. 2020, 8, 360. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins 2010, 2, 2428–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Bakovic, M. Biologically active triterpenoids and their cardioprotective and antiinflammatory effects. J. Bioanal. Biomed. 2015, S12, 005. [Google Scholar]
- Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopunct. 2019, 22, 55–67. [Google Scholar]
- Şoica, C.M.; Antal, D.; Andrica, F.; Racoviceanu, R.; Moacă, A.; Ardelean, F.; Ghiulai, R.; Avram, S.; Danciu, C.; Coricovac, D.; et al. Lupan-skeleton pentacyclic triterpenes with activity against skin cancer: Preclinical trials evolution. In Unique Aspects of Anti-Cancer Drug Development; IntechOpen: Rijeka, Croatia, 2017; pp. 87–114. [Google Scholar]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.-L.; Zhang, L.; Zhou, D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isah, M.B.; Ibrahim, M.A.; Mohammed, A.; Aliyu, A.B.; Masola, B.; Coetzer, T.H.T. A systematic review of pentacyclic triterpenes and their derivatives as chemotherapeutic agents against tropical parasitic diseases. Parasitology 2016, 143, 1219–1231. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef] [Green Version]
- Kviecinski, M.R.; David, I.M.B.; Fernandes, F.D.S.; Correa, M.D.R.; Clarinda, M.M.; Freitas, A.F.; Da Silva, J.; Gava, M.; Müller, S.D.; Florentino, D.; et al. Healing effect of Dillenia indica fruit extracts standardized to betulinic acid on ultraviolet radiation-induced psoriasis-like wounds in rats. Pharm. Biol. 2017, 55, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-S.; Lee, D.-S.; Kim, D.-C.; Yoon, C.-S.; Ko, W.; Oh, H.; Kim, Y.-C. Anti-inflammatory effects and mechanisms of action of Coussaric and Betulinic acids isolated from diospyros kaki in lipopolysaccharide-stimulated RAW 264.7 macrophages. Molecules 2016, 21, 1206. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Chen, T.; Liu, F. Betulinic acid alleviates myocardial hypoxia/reoxygenation injury via inducing Nrf2/HO-1 and inhibiting p38 and JNK pathways. Eur. J. Pharmacol. 2018, 838, 53–59. [Google Scholar] [CrossRef]
- Bai, Y.-Y.; Yan, D.; Zhou, H.-Y.; Li, W.-X.; Lou, Y.-Y.; Zhou, X.-R.; Qian, L.; Xiao, C. Betulinic acid attenuates lipopolysaccharide-induced vascular hyporeactivity in the rat aorta by modulating Nrf2 antioxidative function. Inflammopharmacology 2020, 28, 165–174. [Google Scholar] [CrossRef]
- Li, J.; Bao, G.; Alyafeai, E.; Ding, J.; Li, S.; Sheng, S.; Shen, Z.; Jia, Z.; Lin, C.; Zhang, C.; et al. Betulinic acid enhances the viability of random-pattern skin flaps by activating autophagy. Front. Pharmacol. 2019, 10, 1017. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, S.; Naumann, K.; Pollok, S.; Wardecki, T.; Vidal-Y-Sy, S.; Nascimento, J.M.; Boerries, M.; Schmidt, G.; Brandner, J.M.; Merfort, I. From a traditional medicinal plant to a rational drug: Understanding the clinically proven wound healing efficacy of birch bark extract. PLoS ONE 2014, 9, e86147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, F.S.; Lin, L.W.; Wu, C.R. Lupeol and its role in chronic diseases. In Drug Discovery from Mother Nature. Advances in Experimental Medicine and Biology, 1st ed.; Gupta, S., Prasad, S., Aggarwal, B., Eds.; Springer: New York, NY, USA, 2016; Volume 929, pp. 145–175. [Google Scholar]
- Beserra, F.P.; Xue, M.; Maia, G.L.D.A.; Rozza, A.L.; Pellizzon, C.H.; Jackson, C.J. Lupeol, a pentacyclic triterpene, promotes migration, wound closure, and contractile effect in vitro: Possible involvement of PI3K/Akt and p38/ERK/MAPK pathways. Molecules 2018, 23, 2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beserra, F.P.; Vieira, A.J.; Gushiken, L.F.S.; De Souza, E.O.; Hussni, M.F.; Hussni, C.A.; Nóbrega, R.H.; Martinez, E.R.M.; Jackson, C.J.; de Azevedo Maia, G.L.; et al. Lupeol, a dietary triterpene, enhances wound healing in streptozotocin-induced hyperglycemic rats with modulatory effects on inflammation, oxidative stress, and angiogenesis. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Park, S.N. Inhibitory effect of lupeol on MMPs expression using aged fibroblast through repeated UVA irradiation. Photochem. Photobiol. 2018, 95, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.E.; Magana, A.A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2017, 17, 161–194. [Google Scholar] [CrossRef]
- Gupta, S.; Bhatt, P.; Chaturvedi, P. Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World J. Microbiol. Biotechnol. 2018, 34, 111. [Google Scholar] [CrossRef] [PubMed]
- Jisha, S.; Gouri, P.; Anith, K.; Sabu, K. Piriformospora indica cell wall extract as the best elicitor for asiaticoside production in Centella asiatica (L.) Urban, evidenced by morphological, physiological and molecular analyses. Plant Physiol. Biochem. 2018, 125, 106–115. [Google Scholar] [CrossRef]
- Song, D.; Jiang, X.; Liu, Y.; Sun, Y.; Cao, S.; Zhang, Z. Asiaticoside attenuates cell growth inhibition and apoptosis induced by Aβ1-42 via inhibiting the TLR4/NF-κB signaling pathway in human brain microvascular endothelial cells. Front. Pharmacol. 2018, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-B.; An, J.-Z.; Qi, F.-Y.; Yang, L.; Tian, Z.; Zhao, M.-G. Neuroprotective effects of Asiaticoside. Neural Regen. Res. 2014, 9, 1275–1282. [Google Scholar] [CrossRef]
- He, L.; Hong, G.; Zhou, L.; Zhang, J.; Fang, J.; He, W.; Tickner, J.; Han, X.; Zhao, L.; Xu, J. Asiaticoside, a component of Centella asiatica attenuates RANKL-induced osteoclastogenesis via NFATc1 and NF-κB signaling pathways. J. Cell. Physiol. 2019, 234, 4267–4276. [Google Scholar] [CrossRef] [PubMed]
- Madhu, K.; Prakash, T. Asiaticoside counteracts the in vitro activation of microglia and astrocytes: Innuendo for multiple sclerosis. Biomed. Pharmacother. 2018, 107, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.Z.; Ye, J.; Jin, G.Y.; Piao, H.M.; Cui, H.; Zheng, M.Y.; Yang, J.S.; Che, N.; Choi, Y.H.; Li, L.C.; et al. Asiaticoside mitigates the allergic inflammation by abrogating the degranulation of mast cells. J. Agric. Food Chem. 2017, 65, 8128–8135. [Google Scholar] [CrossRef] [PubMed]
- Yingchun, L.; Huihan, W.; Rong, Z.; Guojun, Z.; Ying, Y.; Zhuogang, L. Antitumor activity of Asiaticoside against multiple myeloma drug-resistant cancer cells is mediated by autophagy induction, activation of effector caspases, and inhibition of cell migration, invasion, and STAT-3 signaling pathway. Med. Sci. Monit. 2019, 25, 1355–1361. [Google Scholar] [CrossRef]
- Boiteau, P.; Ratsimamanga, A.R. Asiaticoside extracted from Centella asiatica and its therapeutic uses in cicatrization of experimental and refractory wounds (leprosy, cutaneous tuberculosis and lupus). Therapie 1956, 11, 125–149. [Google Scholar]
- Kimura, Y.; Sumiyoshi, M.; Samukawa, K.-I.; Satake, N.; Sakanaka, M. Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur. J. Pharmacol. 2008, 584, 415–423. [Google Scholar] [CrossRef]
- Feng, X.; Huang, N.; Lin, D.; Zhu, L.; Zhang, M.; Chen, Y.; Wu, F. Effects of Asiaticoside treatment on the survival of random skin flaps in rats. J. Investig. Surg. 2019, 1–11. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, X.; Du, L.; Jin, Y. Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury. Biomed. Pharmacother. 2016, 83, 33–40. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, H.; Shi, X.; Zhao, J.; Chen, Y.; Wu, F.; Yang, J.; Li, X. Asiaticoside nitric oxide gel accelerates diabetic cutaneous ulcers healing by activating Wnt/β;-catenin signaling pathway. Int. Immunopharmacol. 2020, 79, 106109. [Google Scholar] [CrossRef]
- Bylka, W.; Znajdek-Awizeń, P.; Studzińska-Sroka, E.; Dańczak-Pazdrowska, A.; Brzezińska, M. Centella asiatica in dermatology: An overview. Phyther Res 2014, 28, 1117–1124. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, H.-L.; Lee, M.H.; You, K.E.; Kwon, B.-J.; Seo, H.J.; Park, J.-C. Asiaticoside enhances normal human skin cell migration, attachment and growth in vitro wound healing model. Phytomedicine 2012, 19, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Bonté, F.; Dumas, M.; Chaudagne, C.; Meybeck, A. Comparative activity of asiaticoside and madecassoside on type I and III collagen synthesis by cultured human fibroblasts. Ann. Pharm. Fr. 1995, 53, 38–42. [Google Scholar]
- Lee, J.; Jung, E.; Kim, Y.; Park, J.; Park, J.; Hong, S.; Kim, J.; Hyun, C.; Kim, Y.S.; Park, D. Asiaticoside induces human collagen i synthesis through TGFβ receptor I kinase (Tβ;RI Kinase)-independent Smad signaling. Planta Medica 2006, 72, 324–328. [Google Scholar] [CrossRef]
- Wongrattanakamon, P.; Nimmanpipug, P.; Sirithunyalug, B.; Saenjum, C.; Jiranusornkul, S. Molecular modeling investigation of the potential mechanism for phytochemical-induced skin collagen biosynthesis by inhibition of the protein phosphatase 1 holoenzyme. Mol. Cell. Biochem. 2018, 454, 45–56. [Google Scholar] [CrossRef]
- Dedinszki, D.; Sipos, A.; Kiss, A.; Batori, R.; Kónya, Z.; Virág, L.; Erdődi, F.; Lontay, B. Protein phosphatase-1 is involved in the maintenance of normal homeostasis and in UVA irradiation-induced pathological alterations in HaCaT cells and in mouse skin. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2015, 1852, 22–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azis, H.A.; Taher, M.; Ahmed, A.S.; Sulaiman, W.M.A.W.; Susanti, D.; Chowdhury, S.R.; Zakaria, Z.A. In vitro and In vivo wound healing studies of methanolic fraction of Centella asiatica extract. S. Afr. J Bot 2017, 108, 163–174. [Google Scholar] [CrossRef]
- Singkhorn, S.; Tantisira, M.H.; Tanasawet, S.; Hutamekalin, P.; Wongtawatchai, T.; Sukketsiri, W. Induction of keratinocyte migration by ECa 233 is mediated through FAK/Akt, ERK, and p38 MAPK signaling. Phytother. Res. 2018, 32, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Zhu, B.; Liang, Y.; Bi, L.; Hu, Z.; Chen, B.; Zhang, K.; Zhu, J. Asiaticoside suppresses collagen expression and TGF-β/Smad signaling through inducing Smad7 and inhibiting TGF-βRI and TGF-βRII in keloid fibroblasts. Arch. Dermatol. Res. 2011, 303, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Bian, D.; Dou, Y.; Gong, Z.; Tan, Q.; Xia, Y.; Dai, Y. Asiaticoside hinders the invasive growth of keloid fibroblasts through inhibition of the GDF-9/MAPK/Smad pathway. J. Biochem. Mol. Toxicol. 2017, 31, e21922. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.; Ozkan, K.; Hatipoglu, F.; Uyaroglu, A.; Arican, M. Effect of Asiaticoside, collagenase, and alpha-chymotrypsin on wound healing in rabbits. Wounds 2016, 28, 279–286. [Google Scholar]
- Shukla, A.; Rasik, A.; Jain, G.; Shankar, R.; Kulshrestha, D.; Dhawan, B. In vitro and in vivo wound healing activity of asiaticoside isolated from Centella asiatica. J. Ethnopharmacol. 1999, 65, 1–11. [Google Scholar] [CrossRef]
- Ayumi, R.R.; Mossadeq, W.M.S.; Zakaria, Z.A.; Bakhtiar, M.T.; Kamarudin, N.; Hisamuddin, N.; Talib, M.; Sabar, A.M. Antinociceptive activity of Asiaticoside in mouse models of induced nociception. Planta Med. 2020, 86, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Meeran, M.F.N.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S.K. Pharmacological properties, molecular mechanisms, and pharmaceutical development of Asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol. 2018, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Rush, W.R.; Murray, G.R.; Graham, D.J.M. The comparative steady-state bioavailability of the active ingredients of madecassol. Eur. J. Drug Metab. Pharmacokinet. 1993, 18, 323–326. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, H.; Sun, F.; Sun, S.; Zhu, Z.; Chai, Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC-MS method. J. Ethnopharmacol. 2015, 163, 31–38. [Google Scholar] [CrossRef]
- Bonte, F.; Dumas, M.; Chaudagne, C.; Meybeck, A. Influence of Asiatic acid, madecassic acid, and Asiaticoside on human collagen I synthesis. Planta Med. 1994, 60, 133–135. [Google Scholar] [CrossRef]
- Wu, F.; Bian, D.; Xia, Y.; Gong, Z.; Tan, Q.; Chen, J.; Dai, Y. Identification of major active ingredients responsible for burn wound healing of Centella asiatica Herbs. Evid. Based Complement. Altern. Med. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Unahabhokha, T.; Sucontphunt, A.; Nimmannit, U.; Chanvorachote, P.; Yongsanguanchai, N.; Pongrakhananon, V. Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharm. Biol. 2014, 53, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Bian, D.; Zhang, J.; Wu, X.; Dou, Y.; Yang, Y.; Tan, Q.; Xia, Y.; Gong, Z.; Dai, Y. Asiatic acid isolated from Centella Asiatica inhibits TGF-β1-induced collagen expression in human keloid fibroblasts via PPAR-γ; activation. Int. J. Biol. Sci. 2013, 9, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-S.; Chiu, C.-S.; Chen, H.-J.; Hou, W.-C.; Sheu, M.-J.; Lin, Y.-C.; Shie, P.-H.; Huang, G.-J. Antinociceptive activities and the mechanisms of anti-inflammation of Asiatic acid in mice. Evid. Based Complement. Altern. Med. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Leng, D.-D.; Gao, F.-F.; Jiang, C.-J.; Xia, Y.-F.; Dai, Y. A LC-ESI-MS method for the simultaneous determination of madecassoside and its metabolite madecassic acid in rat plasma: Comparison pharmacokinetics in normal and collagen-induced arthritic rats. Chin. J. Nat. Med. 2014, 12, 943–951. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Li, Y.; Luo, Y.; Huang, F.; Gong, Z.; Meng, Q. Madecassoside isolated from Centella asiatica Herbs facilitates burn wound healing in mice. Planta Med. 2008, 74, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Li, M.; Lu, Y.-H.; Liu, D.-H.; Li, C.-C. Burn wound healing properties of Asiaticoside and Madecassoside. Exp. Ther. Med. 2016, 12, 1269–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Li, Z.; Wang, H.; Du, S. Increased cutaneous wound healing effect of biodegradable liposomes containing madecassoside: Preparation optimization, in vitro dermal permeation, and in vivo bioevaluation. Int. J. Nanomed. 2016, 11, 2995–3007. [Google Scholar] [CrossRef] [Green Version]
- Moura-Letts, G.; Villegas, L.F.; Marçalo, A.; Vaisberg, A.J.; Hammond, G.B. In vivo wound-healing activity of oleanolic acid derived from the acid hydrolysis of Anredera diffusa. J. Nat. Prod. 2006, 69, 978–979. [Google Scholar] [CrossRef]
- Kuonen, R.; Weissenstein, U.; Urech, K.; Kunz, M.; Hostanska, K.; Estko, M.; Heusser, P.; Baumgartner, S. Effects of lipophilic extract of Viscum album L. and oleanolic acid on migratory activity of NIH/3T3 fibroblasts and on HaCat keratinocytes. Evid. Based Complement. Altern. Med. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Li, Y.; Murakami, T.; Yamahara, J.; Yoshikawa, M. Protective effects of oleanolic acid oligoglycosides on ethanol-or indomethacin-induced gastric mucosal lesions in rats. Life Sci. 1998, 63, PL245–PL250. [Google Scholar] [CrossRef]
- Astudillo, L.; Rodriguez, J.A.; Schmeda-Hirschmann, G. Gastroprotective activity of oleanolic acid derivatives on experimentally induced gastric lesions in rats and mice. J. Pharm. Pharmacol. 2002, 54, 583–588. [Google Scholar] [CrossRef]
- Rodríguez, J.A. Oleanolic acid promotes healing of acetic acid-induced chronic gastric lesions in rats. Pharmacol. Res. 2003, 48, 291–294. [Google Scholar] [CrossRef]
- Bernabé-García, Á; Armero-Barranco, D.; Liarte, S.; Ruzafa-Martinez, M.; Ramos-Morcillo, A.J.; Nicolás, F.J. Oleanolic acid induces migration in Mv1Lu and MDA-MB-231 epithelial cells involving EGF receptor and MAP kinases activation. PLoS ONE 2017, 12, e0172574. [Google Scholar] [CrossRef]
- Shen, L.; Cui, Z.; Lin, Y.; Wang, S.; Zheng, D.; Tan, Q. Anti-inflammative effect of glycyrrhizin on rat thermal injury via inhibition of high-mobility group box 1 protein. Burns 2015, 41, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.R.; Roh, H.; Jung, J.H.; Ahn, H.M.; Lee, J.H.; Yun, C.-O.; Lee, W.J. Antifibrotic effects of high-mobility group box 1 protein inhibitor (Glycyrrhizin) on keloid fibroblasts and keloid spheroids through reduction of autophagy and induction of apoptosis. Int. J. Mol. Sci. 2019, 20, 4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, T.; Chen, Z.; Yuan, H.; Wang, Y.; Peng, X.; Wei, C.; Yang, J.; Xu, C. Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization. Biochem. Biophys. Res. Commun. 2018, 497, 430–436. [Google Scholar] [CrossRef]
- Nakamura, S.; Moriura, T.; Park, S.; Fujimoto, K.; Matsumoto, T.; Ohta, T.; Matsuda, H.; Yoshikawa, M. Melanogenesis inhibitory and fibroblast proliferation accelerating effects of Noroleanane-and oleanane-type triterpene oligoglycosides from the flower buds of Camellia japonica. J. Nat. Prod. 2012, 75, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Ninomiya, K.; Takamori, Y.; Nishida, E.; Yasue, M.; Hayakawa, T.; Muraoka, O.; Li, X.; Nakamura, S.; Yoshikawa, M.; et al. Oleanane-type triterpene saponins with collagen synthesis-promoting activity from the flowers of Bellis perennis. Phytochemistry 2015, 116, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Assessment report on Calendula officinalis L. flos.; EMA/HMPC/603409/2017; European Medicines Agency: London, UK, 2017; Volume 44.
- Szakiel, A.; Ruszkowski, D.; Janiszowska, W. Saponins in Calendula officinalis L. -Structure, biosynthesis, transport and biological activity. Phytochem. Rev. 2005, 4, 151–158. [Google Scholar] [CrossRef]
- Nicolaus, C.; Junghanns, S.; Hartmann, A.; Murillo, R.; Ganzera, M.; Merfort, I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J. Ethnopharmacol. 2017, 196, 94–103. [Google Scholar] [CrossRef]
- Ruan, J.; Zheng, C.; Qu, L.; Liu, Y.; Han, L.; Yu, H.; Zhang, Y.; Wang, T. Plant resources, 13C-NMR spectral characteristic and pharmacological activities of dammarane-type triterpenoids. Molecules 2016, 21, 1047. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Laval, S.; Yu, B. Chemical synthesis of saponins. In Advances in Carbohydrate Chemistry and Biochemistry, 1st ed.; Horton, D., Ed.; Academic Press: London, UK, 2014; Volume 71, pp. 137–226. [Google Scholar]
- Kim, J.H.; Yi, Y.-S.; Kim, M.-Y.; Cho, J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases. J. Ginseng Res. 2017, 41, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Song, L.; Wang, Z.; Zhao, W.; Mao, W.; Yin, M. Panaxydol inhibits the proliferation and induces the differentiation of human hepatocarcinoma cell line HepG2. Chem. Interact. 2009, 181, 138–143. [Google Scholar] [CrossRef]
- Wee, J.; Park, K.; Chung, A.-S. Biological activities of ginseng and its application to human health. In Oxidative Stress and Disease; Informa UK Limited: Boca Raton, FL, USA, 2011; pp. 157–174. [Google Scholar]
- Zhou, P.; Lu, S.; Luo, Y.; Wang, S.; Yang, K.; Zhai, Y.; Sun, G.; Sun, X. Attenuation of TNF-α-induced inflammatory injury in endothelial cells by ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front. Pharmacol. 2017, 8, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.H.; Cho, S.Y.; Kim, S.J.; Shin, E.S.; Chang, H.K.; Kim, D.H.; Yeom, M.H.; Woe, K.S.; Lee, J.; Sim, Y.C.; et al. Ginsenoside F1 protects human HaCaT keratinocytes from ultraviolet-B-induced apoptosis by maintaining constant levels of Bcl-2. J. Investig. Dermatol. 2003, 121, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Sumiyoshi, M.; Kawahira, K.; Sakanaka, M.; Kimura, Y. Effects of Red Ginseng extract on ultraviolet B-irradiated skin change in C57BL mice. Phytother. Res. 2008, 22, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M.; Kawahira, K.; Sakanaka, M. Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. Br. J. Pharmacol. 2006, 148, 860–870. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jung, E.; Lee, J.; Huh, S.; Kim, J.; Park, M.; So, J.; Ham, Y.; Jung, K.; Hyun, C.-G.; et al. Panax ginseng induces human Type I collagen synthesis through activation of Smad signaling. J. Ethnopharmacol. 2007, 109, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-O.; Choe, S.J.; Uchida, Y.; Kim, I.; Jeong, Y.; Park, K. Ginsenoside Rb1 enhances keratinocyte migration by a sphingosine-1-phosphate-dependent mechanism. J. Med. Food 2018, 21, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.; Gopalakrishnan, C.; Bhutani, K.K. Dammarane triterpene saponin from Bacopa monnieri as the superoxide inhibitor in polymorphonuclear cells. Planta Med. 2001, 67, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Janani, P.; Sivakumari, K.; Geetha, A.; Yuvaraj, S.; Parthasarathy, C. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma. Cell Biochem. Funct. 2010, 28, 164–169. [Google Scholar] [CrossRef]
- Sharath, R.; Harish, B.; Krishna, V.; Sathyanarayana, B.; Swamy, H.K. Wound healing and protease inhibition activity of Bacoside-A, isolated from Bacopa monnieri wettest. Phytother. Res. 2010, 24, 1217–1222. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, L. Suppressive effect of bacoside A on hypertrophic scar formation by downregulation of TGF-β1. Trop. J. Pharm. Res. 2018, 17, 1725. [Google Scholar] [CrossRef]
- Liu, Y.-B.; Yang, Y.-P.; Yuan, H.-W.; Li, M.-J.; Qiu, Y.-X.; Choudhary, M.I.; Wang, W. A review of triterpenoids and their pharmacological activities from Genus kadsura. Digit. Chin. Med. 2018, 1, 247–258. [Google Scholar] [CrossRef]
- Ríos, J.-L.; Andújar, I. Lanostanoids from fungi as potential medicinal agents. In Fungal Metabolites; Springer Science and Business Media LLC: Cham, Switzerland, 2015; pp. 1–34. [Google Scholar]
- Popović, V.; Živković, J.; Davidovic, S.; Stevanović, M.; Stojković, D. Mycotherapy of cancer: An update on cytotoxic and antitumor activities of mushrooms, bioactive principles and molecular mechanisms of their action. Curr. Top. Med. Chem. 2013, 13, 2791–2806. [Google Scholar] [CrossRef] [PubMed]
- Fatmawati, S.; Kondo, R.; Shimizu, K. Structure-activity relationships of lanostane-type triterpenoids from Ganoderma lingzhi as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 5900–5903. [Google Scholar] [CrossRef] [PubMed]
- Yedgar, S.; Cohen, Y.; Shoseyov, D. Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2006, 1761, 1373–1382. [Google Scholar] [CrossRef]
- Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of Type 2 diabetes mellitus. Planta Med. 2015, 81, 975–994. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Seo, J.; Kim, J.; Kim, H.; Youn, U.; Lee, J.; Jung, H.; Na, M.; Hattori, M.; Min, B.; et al. Lanostane triterpenes from the fruiting bodies of Ganoderma lucidum and their inhibitory effects on adipocyte differentiation in 3T3-L1 Cells. J. Nat. Prod. 2010, 73, 172–176. [Google Scholar] [CrossRef]
- Liu, X.; Winkler, A.; Schwan, W.; Volk, T.; Rott, M.; Monte, A. Antibacterial compounds from mushrooms II: Lanostane triterpenoids and an ergostane steroid with activity against Bacillus cereus isolated from Fomitopsis pinicola. Planta Med. 2009, 76, 464–466. [Google Scholar] [CrossRef]
- El Dine, R.S.; El Halawany, A.M.; Ma, C.-M.; Hattori, M. Anti-HIV-1 protease activity of lanostane triterpenes from the Vietnamese mushroom Ganoderma colossum. J. Nat. Prod. 2008, 71, 1022–1026. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, L.; Yang, Y.; Liu, Y. Cycloastragenol: An exciting novel candidate for age-associated diseases. Exp. Ther. Med. 2018, 16, 2175–2182. [Google Scholar] [CrossRef]
- Lee, S.; Chang, W.; Li, Z.; Kirkby, N.S.; Tsai, W. Phytomedicine Astragaloside VI and cycloastragenol-6-O-beta-D-glucoside promote wound healing in vitro and in vivo. Phytomedicine 2018, 38, 183–191. [Google Scholar] [CrossRef]
- Ip, F.C.; Ng, Y.P.; An, H.; Dai, Y.; Pang, H.H.; Hu, Y.Q.; Chin, A.C.; Harley, C.B.; Wong, Y.H.; Ip, N.Y. Cycloastragenol is a potent telomerase activator in neuronal cells: Implications for depression management. Neurosignals 2014, 22, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xu, L.; Yang, X.; Dong, Y.; Luo, H.; Xing, F.; Ge, Q. The potential role of Cycloastragenol in promoting diabetic wound repair in vitro. BioMed Res. Int. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.; Sun, Y.; Xiao, P.; Wu, E. Recent advances in natural bioactive cycloartane triterpenoids. In Mechanism and Action of Phytoconstituents-Recent Progress in Medicinal Plants, 1st ed.; Awaad, A.S., Kaushik, G., Govil, J.N., Eds.; Studium Press Pvt. Ltd.: New Delhi, India, 2011; Volume 31, pp. 49–63. [Google Scholar]
- Azimova, S.S. Natural Compounds-Cycloartane Triterpenoids and Glycosides, 1st ed.; Springer: New York, NY, USA, 2013; pp. 1–509. [Google Scholar]
- Sevimli-Gür, C.; Onbaşılar, İ.; Atilla, P.; Genç, R.; Çakar, N.; Deliloğlu-Gürhan, I.; Bedir, E. In vitro growth stimulatory and in vivo wound healing studies on cycloartane-type saponins of Astragalus genus. J. Ethnopharmacol. 2011, 134, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.-H.; Chen, X.; Chen, L.; Li, N.; Liang, W.-Q.; Gao, J. Topical Astragaloside IV-Releasing hydrogel improves healing of skin wounds in vivo. Biol. Pharm. Bull. 2012, 35, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Peng, L.-H.; Li, N.; Li, Q.-M.; Li, P.; Fung, K.-P.; Leung, P.-C.; Gao, J.-Q. The healing and anti-scar effects of astragaloside IV on the wound repair in vitro and in vivo. J. Ethnopharmacol. 2012, 139, 721–727. [Google Scholar] [CrossRef]
- Chen, X.; Peng, L.-H.; Shan, Y.-H.; Li, N.; Wei, W.; Yu, L.; Li, Q.-M.; Liang, W.-Q.; Gao, J.-Q. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery. Int. J. Pharm. 2013, 447, 171–181. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef] [Green Version]
- Carmona, F.; Pereira, A.M.S. Herbal medicines: Old and new concepts, truths and misunderstandings. Rev. Bras. Farm. 2013, 23, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How can synergism of traditional medicines benefit from network pharmacology? Molecules 2017, 22, 1135. [Google Scholar] [CrossRef]
- Butnariu, M.; Coradini, C.Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry. Chem. Cent. J. 2012, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Preethi, K.C.; Kuttan, R. Wound healing activity of flower extract of Calendula officinalis. J. Basic Clin. Physiol. Pharmacol. 2009, 20, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Buzzi, M.; De Freitas, F.; Winter, M.D.B. Therapeutic effectiveness of a Calendula officinalis extract in venous leg ulcer healing. J. Wound Care 2016, 25, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Hashim, P.; Sidek, H.; Helan, M.H.M.; Sabery, A.; Palanisamy, U.D.; Ilham, M. Triterpene composition and bioactivities of Centella asiatica. Molecules 2011, 16, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Somboonwong, J.; Kankaisre, M.; Tantisira, B.; Tantisira, M.H. Wound healing activities of different extracts of Centella asiatica in incision and burn wound models: An experimental animal study. BMC Complement. Altern. Med. 2012, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-S.; Chen, S.-N. Extracted triterpenes from Antrodia cinnamomea reduce the inflammation to promote the wound healing via the STZ inducing hyperglycemia-diabetes mice model. Front. Pharmacol. 2016, 7, 154. [Google Scholar] [CrossRef] [Green Version]
- Hanafi, N.H.; Amiri, F.T.; Shahani, S.; Enayatifard, R.; Ghasemi, M. Licorice cream promotes full-thickness wound healing in Guinea pigs. J. Res. Pharm. 2018, 22, 84–94. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, B.; Alam, P.; Singh, V.; Kumar Gupta, S. Rubia cordifolia-A review on pharmaconosy and phytochemistry. Int. J. Pharm. Sci. Res. 2016, 7, 2720. [Google Scholar]
- Karodi, R.; Jadhav, M.; Rub, R.; Bafna, A. Evaluation of the wound healing activity of a crude extract of Rubia cordifolia L. (Indian madder) in mice. Int. J. Appl. Res. Nat. Prod. 2009, 2, 12–18. [Google Scholar]
- Poltanov, E.A.; Shikov, A.N.; Dorman, H.J.D.; Pozharitskaya, O.N.; Makarov, V.G.; Tikhonov, V.P.; Hiltunen, R. Chemical and antioxidant evaluation of Indian gooseberry (emblica officinalis gaertn., syn. phyllanthus emblica L.) supplements. Phytother. Res. 2009, 23, 1309–1315. [Google Scholar] [CrossRef]
- Nguyen, T.-A.-T.; Duong, T.-H.; Le Pogam, P.; Beniddir, M.A.; Nguyen, H.H.; Do, T.-M.-L.; Nguyen, K.-P.-P. Two new triterpenoids from the roots of Phyllanthus emblica. Fitoterapia 2018, 130, 140–144. [Google Scholar] [CrossRef]
- Sumitra, M.; Manikandan, P.; Gayathri, V.S.; Mahendran, P.; Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen 2009, 17, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, K.; Garg, P.; Singhal, M.; Srivastava, B. Wound healing potential of extract of Jatropha curcas L. (Stem bark) in rats. Pharmacogn. J. 2011, 3, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Hajialyani, M.; Tewari, D.; Sobarzo-Sánchez, E.; Nabavi, S.M.; Farzaei, M.H.; Abdollahi, M. Natural product-based nanomedicines for wound healing purposes: Therapeutic targets and drug delivery systems. Int. J. Nanomed. 2018, 13, 5023–5043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, M.E.; Wallace, M.B.; Kanouni, T.; Scorah, N.; O’Connell, S.M.; Miyake, H.; Shi, L.; Halkowycz, P.; Zhang, L.; Dong, Q. Design and synthesis of orally available MEK inhibitors with potent in vivo antitumor efficacy. Bioorg. Med. Chem. Lett. 2012, 22, 2411–2414. [Google Scholar] [CrossRef]
- EMA. Episalvan-EPAR Summary for the Public 2016. Available online: https://www.ema.europa.eu/en/documents/overview/episalvan-epar-summary-public_en.pdf (accessed on 12 August 2020).
- Laszczyk, M.; Jäger, S.; Simon-Haarhaus, B.; Scheffler, A.; Schempp, C.M. Physical, chemical and pharmacological characterization of a new Oleogel-forming triterpene extract from the outer bark of birch (Betulae Cortex). Planta Med. 2006, 72, 1389–1395. [Google Scholar] [CrossRef] [Green Version]
- Grysko, M.; Daniels, R. Evaluation of the mechanism of gelation of an oleogel based on a triterpene extract from the outer bark of birch. Die Pharm. 2013, 68, 572–577. [Google Scholar]
- Steinbrenner, I.; Houdek, P.; Pollok, S.; Brandner, J.M.; Daniels, R. Influence of the oil phase and topical formulation on the wound healing ability of a birch bark dry extract. PLoS ONE 2016, 11, e0155582. [Google Scholar] [CrossRef] [Green Version]
- Färber, A.; Daniels, R. Ex vivo skin permeation of betulin from water-in-oil foams. Ski. Pharmacol. Physiol. 2016, 29, 250–256. [Google Scholar] [CrossRef]
- De Souza, M.L.; Oliveira, D.D.; Pereira, N.D.P.; Soares, D.D.M. Nanoemulsions and dermatological diseases: Contributions and therapeutic advances. Int. J. Dermatol. 2018, 57, 894–900. [Google Scholar] [CrossRef]
- Alvarado, H.; Abrego, G.; Souto, E.B.; Garduño-Ramirez, M.; Clares, B.; García, M.; Calpena, A.C. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: In vitro, ex vivo and in vivo characterization. Colloids Surf. B Biointerfaces 2015, 130, 40–47. [Google Scholar] [CrossRef]
- De Melo, R.G.; De Andrade, A.F.; Bezerra, R.P.; Marques, D.D.A.V.; Da Silva, V.A.; Paz, S.T.; Filho, J.L.D.L.; Porto, A.L.F. Hydrogel-based Chlorella vulgaris extracts: A new topical formulation for wound healing treatment. Environ. Boil. Fishes 2019, 31, 3653–3663. [Google Scholar] [CrossRef]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int. J. Biol. Macromol. 2018, 107, 1888–1897. [Google Scholar] [CrossRef]
- Lee, M.S.; Seo, S.R.; Kim, J.C. A β-cyclodextrin, polyethyleneimine and silk fibroin hydrogel containing Centella asiatica extract and hydrocortisone acetate: Releasing properties and in vivo efficacy for healing of pressure sores. Clin. Exp. Dermatol. 2012, 37, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Sawatdee, S.; Choochuay, K.; Chanthorn, W.; Srichana, T. Evaluation of the topical spray containing Centella asiatica extract and its efficacy on excision wounds in rats. Acta Pharm. 2016, 66, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.S.; Taher, M.; Mandal, U.K.; Jaffri, J.M.; Susanti, D.; Mahmood, S.; Zakaria, Z.A. Pharmacological properties of Centella asiatica hydrogel in accelerating wound healing in rabbits. BMC Complement. Altern. Med. 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dalwadi, C.; Patel, G. Application of nanohydrogels in drug delivery systems: Recent patents review. Recent Patents Nanotechnol. 2015, 9, 17–25. [Google Scholar] [CrossRef]
- Thanuska, A.V.; Dinda, A.K.; Koul, V. Evaluation of nano hydrogel composite based on gelatin/HA/CS suffused with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. Mater. Sci. Eng. C 2018, 89, 378–386. [Google Scholar] [CrossRef]
- Mei, L.; Fan, R.; Li, X.; Wang, Y.; Han, B.; Gu, Y.; Zhou, L.; Zheng, Y.; Tong, A.; Guo, G. Nanofibers for improving the wound repair process: The combination of a grafted chitosan and an antioxidant agent. Polym. Chem. 2017, 8, 1664–1671. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, L.; Zhu, W.; Hu, C.; Jin, R.; Sun, B.; Shi, Y.; Zhang, Y.; Cui, W. Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin. Colloids Surf. B Biointerfaces 2014, 115, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.H.; Yeh, J.Y.; Chen, Y.S.; Li, M.H.; Huang, C.H. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J. Tissue Eng. Regen. Med. 2017, 11, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Mihai, M.M.; Dima, M.B.; Dima, B.; Holban, A.M. Nanomaterials for wound healing and infection control. Materials 2019, 12, 2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namviriyachote, N.; Lipipun, V.; Akkhawattanangkul, Y.; Charoonrut, P.; Ritthidej, G.C. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J. Pharm. Sci. 2019, 14, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.H.; Soshnikova, V.; Markus, J.; Kim, Y.-J.; Lee, S.C.; Singh, P.; Castro-Aceituno, V.; Ahn, S.; Kim, D.H.; Shim, Y.J.; et al. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artif. Cells Nanomed. Biotechnol. 2017, 46, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Aazam, E.S.; Zaheer, Z. Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus. Bioprocess Biosyst. Eng. 2016, 39, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Kianvash, N.; Bahador, A.; Pourhajibagher, M.; Ghafari, H.; Nikoui, V.; Rezayat, S.M.; Dehpour, A.R.; Partoazar, A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv. Transl. Res. 2017, 7, 654–663. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: An integrative review. Arch. Dermatol. Res. 2014, 306, 601–617. [Google Scholar] [CrossRef]
- Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci. 2010, 72, 546–556. [Google Scholar] [CrossRef] [Green Version]
- Young, G.; Jewell, D. Creams for preventing stretch marks in pregnancy. Cochrane Database Syst. Rev. 1996, 1. [Google Scholar] [CrossRef]
- Widgerow, A.D.; Chait, L.A.; Stals, R.; Stals, P.J. New innovations in scar management. Aesthet. Plast. Surg. 2000, 24, 227–234. [Google Scholar] [CrossRef]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Paocharoen, V. The efficacy and side effects of oral Centella asiatica extract for wound healing promotion in diabetic wound patients. J. Med Assoc. Thail. 2010, 93, 166–170. [Google Scholar]
- Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella asiatica in cosmetology. Adv. Dermatol. Allergol. 2013, 1, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Lueangarun, S.; Srituravanit, A.; Tempark, T. Efficacy and safety of moisturizer containing 5% panthenol, madecassoside, and copper-zinc-manganese versus 0.02% triamcinolone acetonide cream in decreasing adverse reaction and downtime after ablative fractional carbon dioxide laser resurfacing: A split-face, double-blinded, randomized, controlled trial. J. Cosmet. Dermatol. 2019, 18, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Barret, J.P.; Podmelle, F.; Lipový, B.; Rennekampff, H.-O.; Schumann, H.; Schwieger-Briel, A.; Zahn, T.R.; Metelmann, H.-R. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program. Burns 2017, 43, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, A. The wound healing properties of betulin from birch bark from bench to bedside. Planta Med. 2019, 85, 524–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weckesser, S.; Schumann, H.; Laszczyk, M.; Müller, M.; Schempp, C.M. Topical treatment of necrotising herpes zoster with betulin from birch bark. Res. Complement. Med. 2010, 17, 271–273. [Google Scholar] [CrossRef]
- Kindler, S.; Schuster, M.; Seebauer, C.; Rutkowski, R.; Hauschild, A.; Podmelle, F.; Metelmann, C.; Metelmann, B.; Müller-Debus, C.; Metelmann, H.-R.; et al. Triterpenes for well-balanced scar formation in superficial wounds. Molecules 2016, 21, 1129. [Google Scholar] [CrossRef] [Green Version]
- Akbari, N.; Asadimehr, N.; Kiani, Z. The effects of licorice containing diphenhydramine solution on recurrent aphthous stomatitis: A double-blind, randomized clinical trial. Complement. Ther. Med. 2020, 50, 102401. [Google Scholar] [CrossRef]
- Seiwerth, J.; Tasiopoulou, G.; Hoffmann, J.; Wölfle, U.; Schwabe, K.; Quirin, K.-W.; Schempp, C.M. Anti-inflammatory effect of a novel topical herbal composition (VEL-091604) consisting of gentian root, licorice root and willow bark extract. Planta Med. 2019, 85, 608–614. [Google Scholar] [CrossRef]
- Beyazit, Y.; Kekilli, M.; Haznedaroglu, I.C.; Kayacetin, E.; Basaranoglu, G. Ankaferd hemostat in the management of gastrointestinal hemorrhages. World J. Gastroenterol. 2011, 17, 3962–3970. [Google Scholar] [CrossRef]
- Quave, C.L. Wound Healing with Botanicals: A review and future perspectives. Curr. Dermatol. Rep. 2018, 7, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Denzler, K.; Moore, J.; Harrington, H.; Morrill, K.; Huynh, T.; Jacobs, B.; Waters, R.; Langland, J.O. Characterization of the physiological response following in vivo administration of Astragalus membranaceus. Evid. Based Complement. Altern. Med. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phytocompound | Source | In vitro Method/Model | Biological Activity | Reference |
---|---|---|---|---|
Betulinic acid | Dillenia indica | Lipid peroxidation test/egg yolk | Protection against lipid peroxidation | [2] |
Diospyros kaki | Lipopolysaccharide-stimulated RAW264.7 macrophages | HO-1/Nrf2 translocation suppressing the NF-κB pathway | [3] | |
Pure compound | Rat cardiomyocyte-derived H9c2 cell/hypoxia/reoxygenation (H/R) model | Protection against myocardial ischemia reperfusion injury | [4] | |
Betulin | Birch bark | Human keratinocytes | Keratinocyte migration, increase of pro-inflammatory mediators | [5] |
Lupeol | Bowdichia virgilioides Pure compound | Epidermal keratinocytes and dermal fibroblasts/scratch wound healing assay UVA radiated dermal fibroblast | Enhancement in migration and wound closure and contraction of dermal fibroblasts; regulation via PI3K/Akt and MAPK pathways Anti -aging effects by inhibiting p16, p21 and p-p53 and decreasing the MMP-1, -2, -3 expression. | [6,7] |
Asiaticoside | Pure compound | Human dermal fibroblasts, human epidermal keratinocytes | increased migration rates of skin cells; enhance the initial skin cell adhesion; increase in the number of normal human dermal fibroblasts | [8] |
Pure compound | Human dermal fibroblasts | Increases the synthesis of type I collagen by activation of the Smad pathway | [9] | |
Centella asiatica | HaCaT keratinocytes | Pro-migratory effect; upregulation of signaling pathways involved in wound healing:FAK, Akt, and MAPK | [10] | |
Pure compound | Keloid primary fibroblast cultures | Inhibition of keloid fibroblasts proliferation and prevention of excessive scarring | [11,12] | |
Asiatic acid | Pure compound | Primary keloid and normal fibroblasts | Keloid prevention by inhibiting TGF-β1-induced collagen expression via PPAR-γ activation | [13] |
Oleanolic acid | Viscum album | NIH/3T3 and HaCat cells/wound healing assay | Enhanced wound closure by stimulation of the migration of fibroblasts | [14] |
Pure compound | mink lung epithelial cells, MDA-MB-231 | Stimulation of cell migration by stimulation of mitogen-activated protein (MAP) kinases | [15] | |
Glycyrrhizin | Pure compound | Normal human dermal fibroblasts | Reduction of fibrosis, increase of apoptosis and reduction of autophagy in keloids by HMGB1 inhibition | [16] |
Camellioside B | Camellia japonica | Normal human neonatal skin Fibroblasts | Enhanced proliferation | [17] |
Perennisosides Asterbatanoside D Bernardioside B2, Bellissaponins | Bellis. perennis | Normal human dermal fibroblasts | Promotion of collagen synthesis | [18] |
Ginsenosides | Panax ginseng CA Meyer | Human dermal fibroblast cells | Healing effect, increase in type I collagen synthesis by activating the Smad pathway | [19] |
Pure compound | HaCaT/wound scratch assay | Wound healing stimulation by increasing the migration of human keratinocytes through S1P dependent mechanism. | [20] | |
Cycloastragenol | Astragalus membranaceus | Human HaCaT keratinocytes and primary human dermal fibroblasts/Scratch wound test | Increase cell migration and proliferation by EGFR stimulation | [21] |
Pure compound | Human epidermal stem cells EpSCs | Wound healing by stimulation of EPSCS proliferation and migration by activation of Wnt/β-catenin signaling | [22] | |
Astragaloside IV, Cyclocephaloside I Cyclocanthoside E | Pure compounds | human keratinocytes/migration scratch assay | Wound healing by proliferation and migration | [23] |
Astragaloside VI | Astragalus membranaceus | Human HaCaT keratinocytes and primary human dermal fibroblasts | Stimulation of skin cell proliferation and migration by activation of EGFR, | [21] |
Phytocompound | Source | In Vivo Method/Model | Biological Activity | Reference |
---|---|---|---|---|
1. EXCISION/INCISION WOUNDS MODEL | ||||
Betulin | Birch bark | Pig ear/porcine ex vivo excision wound healing model and re-epithelialization | Formation of the skin barrier, wound healing, re-epithelization | [5] |
Lupeol | Bowdichia virgilioides | Male Wistar rats/streptozotocin induced hyperglycemia- excision wound model | Enhancement of the healing process through the anti-inflammatory effect of NF-κb signaling pathways | [24] |
Asiaticoside | Centella asiatica | Rabbits/excision wound | Shortening of the epithelization period by increase in hydroxyproline content and induction of collagen synthesis | [25] |
Pure compound | Rabbits/excision wound | Accelerated wound healing, keloid prevention formation, invisible scar formation in open wounds showing tissue loss | [26] | |
Pure compound | Guinea pigs/excision wound | Enhanced rate of wound healing by increase in collagen synthesis and tensile strength of the wound tissues | [27] | |
Oleanolic acid | Anredera diffusa | Male mice/excision wound | Enhanced cicatrizant activity | [28] |
Bacosides | Bacopa monnieri | Swiss Wistar strain rats/incision wound models | Acceleration of epithelialization and wound contraction rate | [29] |
Astragaloside IV, Cyclocephaloside I Cyclocanthoside E | Pure compounds | Sprague–Dawley male rats/incision wound model | Wound healing by enhanced cell density, regularly organized dermis and angiogenesis | [23] |
Astragaloside IV | Pure compound | Sprague-Dawley (SD) female rats/excision model | Faster wound closure by increased collagen synthesis and TGF-β1 levels | [30] |
Pure compound | Sprague–Dawle female rat/skin excision wound model | Acceleration of the wound re-epthelization, angiogenesis, scar prevention | [31] | |
2. BURN/THERMAL WOUNDS MODEL | ||||
Asiaticoside | Centella asiatica | Male Balb/c mice/burn wound model | Increase in burn wound repair by VEGF and IL-1β production | [32] |
Pure compound | Sprague-Dawley rats/burn wound model | Accelerated skin recovery in deep partial-thickness burn injury by VEGF prodiuction | [33] | |
Madecassoside | Centella asiatica | Male ICR mice/burn wound model | Accelerated burn wound healing by increased antioxidative activity, collagen synthesis and angiogenesis. | [34] |
Pure compound | Male Sprague-Dawley rats/burn wound model | Accelerated burn wound healing, wound contraction by stimulation of collagen synthesis, reducing oxidative stress and inducing vasodilatation | [35] | |
Pure compound | SD rats/burn wound model | Scar reduction and wound healing improvement | [36] | |
Glycyrrhizin | Pure compound | BALB/c mice/burn wound model | Restores the synthesis of β-defensins and enhances the resistance to infection with Pseudomonas aeruginosa | [37] |
Pure compound | Male Sprague-Dawley rats/thermal injury model | Anti-inflammatory effect and organ protection by inhibition of HMGB1 | [38] | |
Ginsenosides | Panax ginseng CA Meyer | Male Balb/c mice/burn wound model | Reduction of wound area, enhanced wound healing by increased neovascularization and VEGF production | [39] |
Bacosides | Pure compound | New Zealand Albino rabbits/thermal injury model | Reduction of the scarring area and scarring thickness by downregulation of MMP-1 or TGF-β1 proteins | [40] |
3. SKIN FLAP WOUNDS MODEL | ||||
Betulinic acid | Pure compound | Male C57BL/6 mice/random-pattern skin flap model | Promotion of angiogenesis, reduction of tissue edema, increase in the survivability of the skin flap | [41] |
Asiaticoside | Pure compound | Male Sprague–Dawley rats/experimental model of rat skin flaps | Enhancement in microcirculation and viability of the skin flaps | [42] |
4. DIABETIC WOUNDS MODEL | ||||
Asiaticoside | Pure compound | SPF SD male rats/diabetic wound model | Accelerated healing of diabetic cutaneous ulcers by regulating Wnt/β-Catenin signaling pathway | [43] |
Pure compound | Sprague Dawley male rats/diabetic wound model | Enhanced rate of wound healing by increase in collagen synthesis and tensile strength of the wound tissues | [27] | |
5. GASTRIC ULCER MODEL | ||||
Oleanolic acid | Fabiana imbricata | Male Swiss Albino mice/induced gastric ulcer model | Gastroprotective effect | [44] |
Fabiana imbricata | Male Sprague–Dawley rats/induced gastric ulcer model | Regeneration of the lesions, increase in gastric mucosal thickness | [45] | |
6. INFECTED WOUND MODEL | ||||
Cycloastragenol (cycloastragenol-6-O-beta-D-glucoside) | Astragalus membranaceus | Male C57BL/6JNarl mice/infected wound healing | Wound healing activity by stimulation of angiogenesis | [21] |
Astragaloside VI | Astragalus membranaceus | Male C57BL/6JNarl mice/infected wounds | Promotion of cutaneous wound healing by enhanced angiogenesis | [21] |
7. PSORIASIS MODEL | ||||
Betulinic acid | Dillenia indica | Ultraviolet induced psoriasis-like wounds/male albino Wistar rats | Accelerated healing process | [2] |
8. EDEMA MODEL | ||||
Asiatic acid | Pure compound | ICR mice/hind paw edema model | Anti-inflammatory activities, pain relief by inhibition of iNOS, COX-2, interleukin-6, IL-1β, and TNF-α expression | [46] |
9. AORTIC CONTRACTION/RELAXATION MODEL | ||||
Betulinic acid | Pure compound | Male Sprague Dawley rats exposed to LPS/aortic contraction-realaxation in sepsis | Reduction in impairments of aortic contraction; antiinflamatory effect | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghiulai, R.; Roşca, O.J.; Antal, D.S.; Mioc, M.; Mioc, A.; Racoviceanu, R.; Macaşoi, I.; Olariu, T.; Dehelean, C.; Creţu, O.M.; et al. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020, 25, 5557. https://doi.org/10.3390/molecules25235557
Ghiulai R, Roşca OJ, Antal DS, Mioc M, Mioc A, Racoviceanu R, Macaşoi I, Olariu T, Dehelean C, Creţu OM, et al. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules. 2020; 25(23):5557. https://doi.org/10.3390/molecules25235557
Chicago/Turabian StyleGhiulai, Roxana, Oana Janina Roşca, Diana Simona Antal, Marius Mioc, Alexandra Mioc, Roxana Racoviceanu, Ioana Macaşoi, Tudor Olariu, Cristina Dehelean, Octavian Marius Creţu, and et al. 2020. "Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches" Molecules 25, no. 23: 5557. https://doi.org/10.3390/molecules25235557
APA StyleGhiulai, R., Roşca, O. J., Antal, D. S., Mioc, M., Mioc, A., Racoviceanu, R., Macaşoi, I., Olariu, T., Dehelean, C., Creţu, O. M., Voicu, M., & Şoica, C. (2020). Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules, 25(23), 5557. https://doi.org/10.3390/molecules25235557