Magnetization Lifetimes Prediction and Measurements Using Long-Lived Spin States in Endogenous Molecules
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef]
- Bröer, S.; Bröer, A. Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem. J. 2017, 474, 1935–1963. [Google Scholar] [CrossRef] [Green Version]
- Asavei, T.; Bobeica, M.; Nastasa, V.; Manda, G.; Naftanaila, F.; Bratu, O.; Mischianu, D.; Cernaianu, M.O.; Ghenuche, P.; Savu, D.; et al. Laser-driven radiation: Biomarkers for molecular imaging of high dose-rate effects. J. Med. Phys. 2019, 46, e726–e734. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.J.; Kurhanewicz, J.; Vigneron, D.B.; Larson, P.E.Z.; Harzstark, A.L.; Ferrone, M.; van Criekinge, M.; Chang, J.W.; Bok, R.; Park, I.; et al. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate. Sci. Transl. Med. 2013, 5, 198ra108. [Google Scholar] [CrossRef] [Green Version]
- Ardenkjær-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 2003, 100, 10158–10163. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, S.; Metcalf, S.; Cochrane, E.J.; Collins, R.C.; Jones, S.; Paley, M.N.J.; Tozer, G.M. Direct arterial injection of hyperpolarized 13C-labeled substrates into rat tumors for rapid MR detection of metabolism with minimal substrate dilution. Magn. Reson. Med. 2017, 78, 2116–2126. [Google Scholar] [CrossRef] [Green Version]
- Pileio, G.; Bowen, S.; Laustsen, C.; Tayler, M.C.D.; Hill-Cousins, J.T.; Brown, L.J.; Brown, R.C.D.; Ardenkjaer-Larsen, J.H.; Levitt, M.H. Recycling and Imaging of Nuclear Singlet Hyperpolarization. J. Am. Chem. Soc. 2013, 135, 5084–5088. [Google Scholar] [CrossRef]
- Mamone, S.; Rezaei-Ghaleh, N.; Opazo, F.; Griesinger, C.; Glöggler, S. Singlet-filtered NMR spectroscopy. Sci. Adv. 2020, 6, eaaz1955. [Google Scholar] [CrossRef] [Green Version]
- Day, S.E.; Kettunen, M.I.; Cherukuri, M.K.; Mitchell, J.B.; Lizak, M.J.; Morris, H.D.; Matsumoto, S.; Koretsky, A.P.; Brindle, K.M. Detecting Response of Rat C6 Glioma Tumors to Radiotherapy Using Hyperpolarized [1-C-13]Pyruvate and C-13 Magnetic Resonance Spectroscopic Imaging. Magn. Reson. Med. 2011, 65, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Kurhanewicz, J.; Vigneron, D.B.; Brindle, K.; Chekmenev, E.Y.; Comment, A.; Cunningham, C.H.; DeBerardinis, R.J.; Green, G.G.; Leach, M.O.; Rajan, S.S.; et al. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research. Neoplasia 2011, 13, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Østergaard Mariager, C.; Nielsen, P.M.; Qi, H.; Schroeder, M.; Bertelsen, L.B.; Laustsen, C. Can Hyperpolarized 13C-Urea be Used to Assess Glomerular Filtration Rate? A Retrospective Study. Tomography 2017, 3, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley & Sons: New York, NY, USA, 2013; ISBN 978-1-118-68184-8. [Google Scholar]
- Carravetta, M.; Levitt, M.H. Long-Lived Nuclear Spin States in High-Field Solution NMR. J. Am. Chem. Soc. 2004, 126, 6228–6229. [Google Scholar] [CrossRef] [PubMed]
- Carravetta, M.; Johannessen, O.G.; Levitt, M.H. Beyond the T1 Limit: Singlet Nuclear Spin States in Low Magnetic Fields. Phys. Rev. Lett. 2004, 92, 153003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVience, S.J.; Walsworth, R.L.; Rosen, M.S. Nuclear spin singlet states as a contrast mechanism for NMR spectroscopy. NMR Biomed. 2013, 26, 1204–1212. [Google Scholar] [CrossRef]
- Pileio, G. Singlet NMR methodology in two-spin-1/2 systems. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 98–99, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vasos, P.R.; Comment, A.; Sarkar, R.; Ahuja, P.; Jannin, S.; Ansermet, J.-P.; Konter, J.A.; Hautle, P.; van den Brandt, B.; Bodenhausen, G. Long-lived states to sustain hyperpolarized magnetization. Proc. Natl. Acad. Sci. USA 2009, 106, 18469–18473. [Google Scholar] [CrossRef] [Green Version]
- Laustsen, C.; Pileio, G.; Tayler, M.C.D.; Brown, L.J.; Brown, R.C.D.; Levitt, M.H.; Ardenkjaer-Larsen, J.H. Hyperpolarized singlet NMR on a small animal imaging system. Magn. Reson. Med. 2012, 68, 1262–1265. [Google Scholar] [CrossRef] [Green Version]
- Pileio, G.; Levitt, M.H. J-Stabilization of singlet states in the solution NMR of multiple-spin systems. J. Magn. Reson. 2007, 187, 141–145. [Google Scholar] [CrossRef]
- Ahuja, P.; Sarkar, R.; Vasos, P.R.; Bodenhausen, G. Long-lived States in Multiple-Spin Systems. ChemPhysChem 2009, 10, 2217–2220. [Google Scholar] [CrossRef] [Green Version]
- Hogben, H.J.; Hore, P.J.; Kuprov, I. Multiple decoherence-free states in multi-spin systems. J. Magn. Reson. 2011, 211, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Grant, A.K.; Vinogradov, E. Long-lived states in solution NMR: Theoretical examples in three- and four-spin systems. J. Magn. Reson. 2008, 193, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, E.; Grant, A.K. Long-lived states in solution NMR: Selection rules for intramolecular dipolar relaxation in low magnetic fields. J. Magn. Reson. 2007, 188, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Theis, T.; Wu, T.-L.; Claytor, K.; Warren, W.S. Long-lived polarization protected by symmetry. J. Chem. Phys. 2014, 141, 134307. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.H. Symmetry constraints on spin dynamics: Application to hyperpolarized NMR. J. Magn. Reson. 2016, 262, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravdivtsev, A.N.; Yurkovskaya, A.V.; Zimmermann, H.; Vieth, H.-M.; Ivanov, K.L. Magnetic field dependent long-lived spin states in amino acids and dipeptides. Phys. Chem. Chem. Phys. 2014, 16, 7584–7594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Håkansson, P. Prediction of low-field nuclear singlet lifetimes with molecular dynamics and quantum-chemical property surface. Phys. Chem. Chem. Phys. 2017, 19, 10237–10254. [Google Scholar] [CrossRef] [Green Version]
- DeVience, S.J.; Walsworth, R.L.; Rosen, M.S. Preparation of Nuclear Spin Singlet States Using SpinLock Induced Crossing. Phys. Rev. Lett. 2013, 111, 173002. [Google Scholar] [CrossRef]
- DeVience, S.J.; Walsworth, R.L.; Rosen, M.S. Dependence of nuclear spin singlet lifetimes on RF spin-locking power. J. Magn. Reson. 2012, 218, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, E.L.; Akutsu, H.; Doreleijers, J.F.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; et al. BioMagResBank. Nucleic Acids Res. 2008, 36, D402–D408. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.; Moskau, D.; Ferrage, F.; Vasos, P.R.; Bodenhausen, G. Single or triple gradients? J. Magn. Reson. 2008, 193, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian Revision D.01. 2016. Available online: https://gaussian.com/glossary/g09/ (accessed on 20 July 2020).
- Hogben, H.J.; Krzystyniak, M.; Charnock, G.T.P.; Hore, P.J.; Kuprov, I. Spinach—A software library for simulation of spin dynamics in large spin systems. J. Magn. Reson. 2011, 208, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Bengs, C.; Levitt, M.H. SpinDynamica: Symbolic and numerical magnetic resonance in a Mathematica environment. Magn. Reson. Chem. 2018, 56, 374–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuprov, I.; Wagner-Rundell, N.; Hore, P.J. Bloch-Redfield-Wangsness theory engine implementation using symbolic processing software. J. Magn. Reson. 2007, 184, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Bornet, A.; Ji, X.; Mammoli, D.; Vuichoud, B.; Milani, J.; Bodenhausen, G.; Jannin, S. Long-Lived States of Magnetically Equivalent Spins Populated by Dissolution-DNP and Revealed by Enzymatic Reactions. Chem. Eur. J. 2014, 20, 17113–17118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Experimental | Theoretical | |||
---|---|---|---|---|---|
T1 of Hβ (s) | TLLS (s) | T1 Hβ (s) | TLLS (s) | TLLS (s) at B0 = 1 T | |
Arg | 0.9 | - | 0.81 | 3.38 | 3.22 |
Asp | 1.6 | 7.48 * | 0.99 | 7.64 | 13.15 |
Asn | 1.3 | 10.7 | 0.99 | 8.333 | 15.45 |
Cys | 1.1 | 13.1 | 0.99 | 9.69 | 22.88 |
Met | 1.1 | - | 0.80 | 3.72 | 3.55 |
Phe | 1.1 | - | 0.87 | 5.91 | 5.94 |
Ser | 1.2 | 10.0 | 1.03 | 9.47 | 21.64 |
Thr | 3.1 | 5.1 | 3.76 | 4.15 | 3.83 |
Val | 2.1 | - | 1.44 | 3.1 | 3.09 |
Citrulline | - | - | 0.83 | 1.86 | 1.65 |
Lactic acid | - | - | 0.53 | 3.84 | 3.47 |
Citric acid | - | 4.50 * | 1.03 | 2.29 | 9.43 |
Fumarate | - | 60 * | 30.01 | >100 | >100 |
Methylfumarate | - | - | 1.96 | 34.59 | - |
Dimethylfumarate | - | 360 * | 1.81 | >100 | - |
Compound | |||||||
---|---|---|---|---|---|---|---|
Asparagine | 19.215 | 0.855 | −0.100 | 0.098 | −13.55 | 5.65 | 1.64 |
Aspartic Acid | 19.305 | 0.854 | −0.100 | 0.099 | −13.41 | 5.51 | 1.55 |
Hystidine | 20.833 | 0.852 | −0.106 | 0.107 | −13.68 | 5.78 | 1.43 |
Serine | 19.723 | 0.852 | −0.109 | 0.109 | −10.52 | 4.81 | 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleanu, F.; Tuță, C.; Cucoanes, A.; Vasilca, S.; Vasos, P.R. Magnetization Lifetimes Prediction and Measurements Using Long-Lived Spin States in Endogenous Molecules. Molecules 2020, 25, 5495. https://doi.org/10.3390/molecules25235495
Teleanu F, Tuță C, Cucoanes A, Vasilca S, Vasos PR. Magnetization Lifetimes Prediction and Measurements Using Long-Lived Spin States in Endogenous Molecules. Molecules. 2020; 25(23):5495. https://doi.org/10.3390/molecules25235495
Chicago/Turabian StyleTeleanu, F., C. Tuță, A. Cucoanes, S. Vasilca, and P. R. Vasos. 2020. "Magnetization Lifetimes Prediction and Measurements Using Long-Lived Spin States in Endogenous Molecules" Molecules 25, no. 23: 5495. https://doi.org/10.3390/molecules25235495
APA StyleTeleanu, F., Tuță, C., Cucoanes, A., Vasilca, S., & Vasos, P. R. (2020). Magnetization Lifetimes Prediction and Measurements Using Long-Lived Spin States in Endogenous Molecules. Molecules, 25(23), 5495. https://doi.org/10.3390/molecules25235495