MH-ICP-MS Analysis of the Freshwater and Saltwater Environmental Resources of Upolu Island, Samoa
Abstract
:1. Introduction
2. Results
2.1. Multi-Element Determination in Freshwater Samples
2.2. Multi-Element Determination in Mangrove Swamp Water Samples
2.3. Multi-Element Determination in Saltwater Samples around Upolu Island, Samoa
2.4. Principal Components Analysis and Elemental Correlation of All Water Samples around Upolu Island, Samoa
2.5. Element Concentration Comparisons to Other Studies
2.6. Water Quality Assessments
2.6.1. Salinity and pH
2.6.2. Dissolved O2, ORP and Nitrate
3. Discussion
3.1. Findings in Relation to Multi-Element Testing
3.2. Salinity and pH
3.3. Dissolved O2, ORP, and Nitrate
3.4. Findings in Relation to Human Health and the Environment
- Mitigating environmental harm caused by use of herbicide and pesticide chemicals through alternative pest management, such as biological control alternatives and hunting incentives. A chemical survey of Upolu Island is required to confirm the source of some elements to the local lithology and/or chemical use;
- Conducting specific investigations into strontium, and silicone deficiencies. Historically this may be investigated by sampling coral skeletons retrieved at known dates in the past;
- Investigating causes of salinity variability of the inner reef and reef zone. Multivariate analyses of historical weather and ocean data with present day sampling through seasons is warranted;
- Future studies need to be performed drawing on the results of this research to see if there are medical cluster effects that correlate to water quality as revealed in Figure 4.
4. Materials and Methods
4.1. Study Area and Sampling
4.2. Materials
4.3. Instrumentation
4.4. Plots and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coyte, R.M.; Singh, A.; Furst, K.E.; Mitch, W.A.; Vengosh, A. Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan, India. Sci. Total Environ. 2019, 688, 1216–1227. [Google Scholar] [CrossRef]
- Kakareka, S.; Kukharchyk, T.; Kurman, P. Major and trace elements content in freshwater lakes of Vecherny Oasis, Enderby Land, East Antarctica. Environ. Pollut. 2019, 255, 113126. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.D.; Zhao, J.-X.; Feng, Y.-X.; Hu, W.-P.; Yu, K.-F.; Gasparon, M.; Pham, T.B.; Clark, T.R. Impact of recent coastal development and human activities on Nha Trang Bay, Vietnam: Evidence from a Porites lutea geochemical record. Coral Reefs 2013, 32, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Abdo, S.Y.; Duliu, O.G.; Zinicovscaia, I.; Sherif, M.M.; Frontasyeva, M.V. Epithermal neutron activation analysis of major and trace elements in Red Sea scleractinian corals. J. Radioanal. Nucl. Chem. 2017, 314, 1445–1452. [Google Scholar] [CrossRef]
- Gasparon, M.; Burgess, J.S. Human impacts in Antarctica: Trace-element geochemistry of freshwater lakes in the Larsemann Hills, East Antarctica. Environ. Geol. 2000, 39, 963–976. [Google Scholar] [CrossRef]
- Hideyuki, S.; Toshio, H.; Eiji, F.; Akio, H.; Hiroki, H. Multielement Determination of Trace Elements in Coastal Seawater by ICP-MS and ICP-AES after Aluminum Coprecipitation Associated with Magnesium. Bull. Chem. Soc. Jpn. 1996, 69, 1925–1931. [Google Scholar]
- Reichert, J.; Arnold, A.L.; Hoogenboom, M.O.; Schubert, P.; Wilke, T. Impacts of Microplastics on Growth and Health of Hermatypic Corals Are Species-Specific. Environ. Pollut. 2019, 254, 113074. [Google Scholar] [CrossRef]
- Rabieh, S.; Bagheri, M.; Planer-Friedrich, B. Speciation of arsenite and arsenate by electrothermal AAS following ionic liquid dispersive liquid-liquid microextraction. Microchim. Acta 2013, 180, 415–421. [Google Scholar] [CrossRef]
- Townsend, A.T. The accurate determination of the first row transition metals in water, urine, plant, tissue and rock samples by sector field ICP-MS. J. Anal. Atomic Spectrom. 2000, 15, 307–314. [Google Scholar] [CrossRef]
- Rončević, S.; Svedružić, L.P. Determination of selected elements in freshwater sponge tissue, natural water and sediments by inductively coupled plasma optical emission spectrometry. Bulg. Chem. Commun. 2014, 46, 401–408. [Google Scholar]
- Zhu, Z.; Zheng, A. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment. Molecules 2018, 23, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bäuchle, M.; Lüdecke, T.; Rabieh, S.; Calnek, K.; Bromage, T.G. Quantification of 71 detected elements from Li to U for aqueous samples by simultaneous-inductively coupled plasma-mass spectrometry. RSC Adv. 2018, 8, 37008–37020. [Google Scholar] [CrossRef] [Green Version]
- Schilling, G.D.; Andrade, F.J.; Barnes, J.H.; Sperline, R.P.; Denton, M.B.; Barinaga, C.J.; Koppenaal, D.W.; Hieftje, G.M. Characterization of a Focal Plane Camera Fitted to a Mattauch−Herzog Geometry Mass Spectrograph. 1. Use with a Glow-Discharge Source. Anal. Chem. 2006, 78, 4319–4325. [Google Scholar] [CrossRef] [PubMed]
- Ardelt, D.; Polatajko, A.; Primm, O.; Reijnen, M. Isotope ratio measurements with a fully simultaneous Mattauch–Herzog ICP-MS. Anal. Bioanal. Chem. 2013, 405, 2987–2994. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.; Quéré, G.; Ghiglione, J.-F.; Iwankow, G.; Barbe, V.; Boissin, E.; Wincker, P.; Planes, S.; Voolstra, C.R. Status of coral reefs of Upolu (Independent State of Samoa) in the South West Pacific and recommendations to promote resilience and recovery of coastal ecosystems. Mar. Pollut. Bull. 2018, 129, 392–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zann, L.P. The Status of Coral Reefs in South Western Pacific Islands. Mar. Pollut. Bull. 1994, 29, 52–61. [Google Scholar] [CrossRef]
- Amosa, P.; Latu, F.; Imo, T.; Vaurasi, V. Preliminary water quality evaluation of the Vaisigano River, Samoa. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 49–54. [Google Scholar]
- Imo-Seuoti, T.; Amosa, P.; Latu, F.; Vaurasi, V. Distribution and occurrence of chemical contaminants in the selected drinking water supply in Samoa. J. Glob. Ecol. Environ. 2016, 5, 27–32. [Google Scholar]
- Chellan, P.; Sadler, P.J. The elements of life and medicines. Philos. Trans. R. Soc. A 2015, 373, 20140182. [Google Scholar] [CrossRef]
- Reykdal, O.; Rabieh, S.; Steingrimsdottir, L.; Gunnlaugsdottir, H. Minerals and trace elements in Icelandic dairy products and meat. J. Food Compos. Anal. 2011, 24, 980–986. [Google Scholar] [CrossRef]
- Shen, T.; Kong, W.; Liu, F.; Chen, Z.; Yao, J.; Wang, W.; Peng, J.; Chen, H.; He, Y. Rapid Determination of Cadmium Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules 2018, 23, 2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.; Huo, X.; Xu, X.; Liu, D.; Wu, W. E-waste lead exposure and children’s health in China. Sci. Total Environ. 2020, 734, 139286. [Google Scholar] [CrossRef] [PubMed]
- Droghini, E.; Annibaldi, A.; Prezioso, E.; Tramontana, M.; Frapiccini, E.; De Marco, R.; Illuminati, S.; Truzzi, C.; Spagnoli, F. Mercury Content in Central and Southern Adriatic Sea Sediments in Relation to Seafloor Geochemistry and Sedimentology. Molecules 2019, 24, 4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, A.H.; Haley, B.A.; Hathorne, E.C.; Plancherel, Y.; Frank, M. Rare earth element distribution in Caribbean seawater: Continentalinputs versus lateral transport of distinct REE compositions in subsurfacewater masses. Mar. Chem. 2015, 177, 172–183. [Google Scholar] [CrossRef]
- ANZECC. Australian Water Quality Guidelines for Fresh and Marine Waters; Australian and New Zealand Environment and Conservation Council: Canberra, Australia, 1992. [Google Scholar]
- Chester, R. Trace elements in the oceans. In Marine Geochemistry; Riley, J.P., Chester, R., Eds.; Springer: Dordrecht, The Netherlands, 1990. [Google Scholar]
- U.S. Environmental Protection Agency. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 9 October 2020).
- Carter, S.C.; Paytan, A.; Griffith, E.M. Toward an improved understanding of the marine barium cycle and the application of marine barite as a paleoproductivity proxy. Minerals 2020, 10, 421. [Google Scholar] [CrossRef]
- Leblanc, K.; Cornet, V.; Rimmelin-Maury, P.; Grosso, O.; Hélias-Nunige, S.; Brunet, C.; Claustre, H.; Ras, J.; Leblond, N.; Quéguiner, B. Silicon cycle in the tropical South Pacific: Contribution to the global Si cycle and evidence for an active pico-sized siliceous plankton. Biogeosciences 2018, 15, 5595–5620. [Google Scholar] [CrossRef] [Green Version]
- Steiner, Z.; Sarkar, A.; Prakash, S.; Vinaychandran, P.N.; Turchyn, A.V. Dissolved Strontium, Sr/Ca Ratios, and the Abundance of Acantharia in the Indian and Southern Oceans. ACS Earth Space Chem. 2020, 4, 802–811. [Google Scholar] [CrossRef]
- Middag, R.; de Baar, H.J.W.; Bruland, K.W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cycles 2019, 33, 63–84. [Google Scholar] [CrossRef] [Green Version]
- Mamun, K.A.; Islam, F.R.; Haque, R.; Khan, M.G.M.; Prasad, A.N.; Haqva, H.; Mudliar, R.R.; Mani, F.S. Smart Water Quality Monitoring System Design and KPIs Analysis: Case Sites of Fiji Surface Water. Sustainability 2019, 11, 7110. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M. Redox potential. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Speijers, G.J.A. Nitrate and Nitrite in Drinking-Water. World Health Organization Guidelines for Drinking-Water Quality; Document number: WHO/SDE/WSH/07.01/16/Rev/1; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Nairn, R.; Beard, M.; Caie, S.; Harrison, I.; O’Brien, J. SAMOA Hydrographic Risk Assessment, Hydrographic Authority; New Zealand Government: Wellington, New Zealand, 2017.
- Ferrier-Pagès, C.; Boisson, F.; Allemand, D.; Tambutté, E. Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar. Ecol. Prog. Ser. 2002, 245, 93–100. [Google Scholar] [CrossRef] [Green Version]
- EPA. Aquatic Life Criteria—Copper. 2020. Available online: https://www.epa.gov/wqc/aquatic-life-criteria-copper (accessed on 28 May 2020).
- Lee, S.; Chung, J.; Lee, Y.-W. Cu and Zn Concentrations in Seawater and Marine Sediments along Korean Coasts from the Perspective of Antifouling Agents. Bull. Environ. Contam. Toxicol. 2018, 101, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Young, S.; Serra, G. 2015 Myna Survey: Report to Inform the Samoan Myna Management Plan; GEF-PAS Invasive Alien Species project, MNRE/DEC Samoa/UNEP/SPREP Report; Ministry of Natural Resources and Environment: Wellington, New Zealand, 2015.
- Nagle, W.G. Managing Myna Birds (Acridotheres fuscus and A. tristis) in the Independent State of Samoa; Technical report on behalf of the Samoan Ministry of Natural Resources and Environment, Department of Environment and Conservation; Ministry of Natural Resources and Environment: Wellington, New Zealand, 2015; p. 32.
- U.S. Environmental Protection Agency. R.E.D. FACTS: Starlicide (3-chloro-p-toluidine hydrochloride). Prevention, Pesticides and Toxic Substances (7508W); EPA-738-F-96-003; U.S. Environmental Protection Agency: Washington, DC, USA, 1995.
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Hasson, A.; Delcroix, T.; Boutin, J. Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades. J. Geophys. Res. Oceans 2013, 118, 5109–5116. [Google Scholar] [CrossRef] [Green Version]
- Oliver, T. Water Chemistry of the Coral Reefs in American Samoa from Water Samples Collected between 2015-02-15 and 2015-03-28, C.R.E.P.P.I.F.S.C.; National Coral Reef Monitoring Program, NOAA National Centers for Environmental Information: Asheville, NC, USA, 2017. [Google Scholar]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abraham, J.P.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Park, J. Exposure to Pesticides and Food Packaging Materials and BMI in Samoan Mothers and Children; Yale School of Public Health, Yale University: New Haven, CT, USA, 2016. [Google Scholar]
- Browne, G.; Goss, M.; Jefferies, S.; Tuapola, K. Fumigation of Giant African Land Snails (Achatina fulica) Using Methyl Bromide and Methyl Iodide; M.f.P. Industries; New Zealand Government: Wellington, New Zealand, 2012.
- Gutschmidt, K. Dermal Exposure; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Hawkins, J.W.; Natland, J.H. Nephelinites and basanites of the Samoan linear volcanic chain: Their possible tectonic significance. Earth Planet. Sci. Lett. 1975, 24, 427–439. [Google Scholar] [CrossRef]
- Guinto, D.; Lauga, S.; Dauara, L.; Walasi, E.; Autufuga, D.; Perera, H.; Seuoti, D.; Sae, A.; Tauati, S. Soil Health Assessment of Taro (C olocasia esculenta) Farms in Samoa. In Moving Farm Systems to Improved Attenuation; Massey University: Palmerston North, New Zealand, 2015. [Google Scholar]
- Carmichael, A.; Harding, R.; Jackson, G.; Kumar, S.; Lal, S.; Masamdu, R.; Wright, J.; Clarke, A.R. TaroPest: An Illustrated Guide to Pests and Diseases of Taro in the South Pacific; ACIAR: Canberra, Australia, 2008. [Google Scholar]
- Ali, A.-h.A.M.; Hamed, M.A.; El-Azim, H.A. Heavy metals distribution in the coral reef ecosystems of the Northern Red Sea. Helgol. Mar. Res. 2011, 65, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Yoshihisa, Y.; Shimizu, T. Metal Allergy and Systemic Contact Dermatitis: An Overview. Dermatol. Res. Pract. 2012, 2012, 749561. [Google Scholar] [CrossRef] [Green Version]
- Jugdaohsingh, R. Silicon and Bone Health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar]
- Kamatani, A.; Takano, M. The behaviour of dissolved silica during the mixing of river and sea waters in Tokyo Bay. Estuar. Coast. Shelf Sci. 1984, 19, 505–512. [Google Scholar] [CrossRef]
- Bien, G.S.; Contois, D.E.; Thomas, W.H. The removal of soluble silica from fresh water entering the sea. Geochim. Cosmochim. Acta 1958, 14, 35–54. [Google Scholar] [CrossRef]
- Natioan Oceanic and Atmospheric Administration. In What Types OF Water Do Corals Live? Available online: https://oceanservice.noaa.gov/facts/coralwaters.html#:~:text=Most%20reef%2Dbuilding%20corals%20also,which%20live%20in%20their%20tissues (accessed on 9 October 2020).
- Van der Merwe, R.; Röthig, T.; Voolstra, C.R.; Ochsenkühn, M.A.; Lattemann, S.; Amy, G.L. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: An In Situ photophysiology experiment. Front. Mar. Sci. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Concentration (µg/L) | Concentration (µg/L) | Concentration (µg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Element | Range | Mean | Element | Range | Mean | Element | Range | Mean |
Li | <LoD a–1.5 | <1.5 | Br | 5.2–853 | 33 | Eu | 0.0030–0.034 | 0.012 |
Be | <LoD | <LoD | Se | 0.030–17 | 0.99 | Gd | 0.0030–0.095 | 0.026 |
B | 0.40–39 | 5.1 | Rb | 0.16–8.5 | 2.8 | Tb | 0.0040–0.012 | 0.0083 |
Na | 1277–90,863 | 6171 | Sr | 7.7–252 | 65 | Dy | 0.0040–0.080 | 0.017 |
Mg | 893–19,571 | 6658 | Y | 0.0030–0.41 | 0.094 | Ho | 0.011–0.012 | 0.012 |
Al | 1.3–181 | 17 | Zr | 0.0020–2.2 | 0.20 | Er | 0.0040–0.044 | 0.014 |
Si | 1564–15,887 | 9493 | Nb | 0.0050–0.31 | 0.050 | Tm | 0.0020–0.0030 | 0.0025 |
P | <LoD–6.7 | <6.7 | Mo | 0.0040–0.29 | 0.065 | Yb | 0.0060–0.036 | 0.025 |
S | <LoD–258 | <258 | Ru | 0.0070–0.0090 | 0.0079 | Lu | 0.0020–0.0030 | 0.0025 |
Cl | 8.9–133,023 | 5821 | Ag | 0.0060–0.021 | 0.014 | Hf | 0.0040–0.053 | 0.023 |
K | 74–3909 | 803 | Pd | 0.0080–0.062 | 0.034 | Ta | 0.017–0.021 | 0.019 |
Ca | 915–24,663 | 7333 | Cd | 0.0080–0.019 | 0.012 | W | 0.0020–0.039 | 0.0088 |
Ti | 0.018–105 | 6.1 | In | <LoD | <LoD | Re | 0.0050–0.0090 | 0.0071 |
V | 0.27–7.4 | 2.9 | Sn | 0.0030–0.017 | 0.0078 | Os | <LoD | <LoD |
Cr | 0.18–2.4 | 0.57 | Sb | 0.0030–0.24 | 0.030 | Ir | <LoD–0.0050 | <0.0050 |
Fe | 0.20–848 | 110 | Te | 0.012–0.16 | 0.088 | Pt | 0.0060–0.014 | 0.010 |
Mn | 0.0020–42 | 1.3 | Cs | 0.0010–0.052 | 0.020 | Au | <LoD | <LoD |
Co | 0.0030–0.34 | 0.053 | Ba | 1.1–22 | 4.2 | Hg | <LoD | <LoD |
Ni | 0.0060–5.2 | 0.52 | La | 0.0020–0.34 | 0.075 | Tl | 0.0010–0.19 | 0.016 |
Cu | 0.013–1.6 | 0.34 | Ce | 0.0020–1.0 | 0.17 | Pb | 0.0060–0.11 | 0.026 |
Zn | 0.024–4.7 | 1.3 | Pr | 0.0020–0.090 | 0.021 | Bi | 0.0030–0.0060 | 0.0041 |
Ga | 0.010–0.33 | 0.041 | Nd | 0.0030–0.50 | 0.064 | U | 0.0010–0.095 | 0.0094 |
As | 0.0010–0.46 | 0.12 | Sm | 0.0070–0.10 | 0.053 |
Concentration (µg/L) | Concentration (µg/L) | Concentration (µg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Element | Range | Mean | Element | Range | Mean | Element | Range | Mean |
Li | 3.8–72 | 26 | Sr | 58–6736 | 1872 | Gd | <LoD–0.0050 | <0.0050 |
Be | <LoD a | <LoD | Y | <LoD | <LoD | Tb | <LoD | <LoD |
B | 8.6–3220 | 912 | Zr | <LoD–0.0070 | <0.0070 | Dy | <LoD | <LoD |
Na | 12,566–3,722,473 | 1,030,848 | Nb | <LoD | <LoD | Ho | <LoD | <LoD |
Mg | 6315–1,541,911 | 429,281 | Mo | 0.057–8.7 | 2.4 | Er | <LoD | <LoD |
Al | 2.1–6.2 | 3.6 | Ru | <LoD | <LoD | Tm | <LoD | <LoD |
Si | 1522–14,816 | 9490 | Ag | <LoD | <LoD | Yb | <LoD | <LoD |
P | <LoD | <LoD | Pd | <LoD | <LoD | Lu | <LoD | <LoD |
S | 1038–282,435 | 104,368 | Cd | 0.043–0.45 | 0.20 | Hf | <LoD | <LoD |
Cl | 13,294–18,592,427 | 5,027,907 | In | <LoD–0.0050 | <0.0050 | Ta | <LoD | <LoD |
K | 808–331113 | 91,270 | Sn | 0.0040–0.019 | 0.012 | W | <LoD–0.0040 | <0.0040 |
Ca | 7429–339042 | 99,982 | Sb | <LoD–0.0030 | <0.0030 | Re | <LoD | <LoD |
Fe | <LoD–0.20 | <0.20 | Te | <LoD | <LoD | Os | <LoD | <LoD |
Mn | 0.050–3.1 | 0.98 | Cs | 0.0090–0.33 | 0.10 | Ir | <LoD | <LoD |
Co | 0.0060–0.024 | 0.016 | Ba | 4.0–22 | 10 | Pt | <LoD | <LoD |
Ni | 0.13–19 | 5.9 | La | <LoD | <LoD | Au | <LoD | <LoD |
Cu | 0.13–5.5 | 1.6 | Ce | <LoD | <LoD | Hg | <LoD | <LoD |
Zn | 0.15–14 | 4.44 | Pr | <LoD | <LoD | Tl | 0.0080–0.67 | 0.24 |
Ga | <LoD | <LoD | Nd | 0.010–0.038 | 0.024 | Pb | 0.0070–0.77 | 0.23 |
Br | 65–112,023 | 30,985 | Sm | <LoD | <LoD | Bi | <LoD | <LoD |
Rb | 1.7–103 | 30 | Eu | <LoD | <LoD | U | 0.0020–1.8 | 0.46 |
Concentration (µg/L) | Concentration (µg/L) | Concentration (µg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Element | Range | Mean | Element | Range | Mean | Element | Range | Mean |
Li | 53–202 | 145 | Sr | 1886–7120 | 5075 | Gd | <LoD | <LoD |
Be | <LoD a | <LoD | Y | <LoD | <LoD | Tb | <LoD | <LoD |
B | 1340–3852 | 2823 | Zr | 0.040–0.25 | 0.13 | Dy | <LoD | <LoD |
Na | 1,753,860–4,852,950 | 3,817,392 | Nb | 0.040–0.24 | 0.18 | Ho | <LoD | <LoD |
Mg | 359,400–2,686,320 | 1,123,246 | Mo | 5.2–21 | 16 | Er | <LoD | <LoD |
Al | 1.2–24 | 7.5 | Ru | 0.080–1.0 | 0.31 | Tm | <LoD | <LoD |
Si | 44–2060 | 956 | Ag | 0.040–0.72 | 0.33 | Yb | 0.040–0.48 | 0.19 |
P | <LoD | <LoD | Pd | 0.080–0.80 | 0.33 | Lu | <LoD | <LoD |
S | 288,820–958,080 | 680,827 | Cd | <LoD | <LoD | Hf | <LoD | <LoD |
Cl | 9,690,340–26,869,680 | 20,737,672 | In | <LoD | <LoD | Ta | <LoD | <LoD |
K | 115,960–635,742 | 351,765 | Sn | 0.040–0.24 | 0.11 | W | <LoD | <LoD |
Ca | 168,880–532,520 | 374,717 | Sb | 0.040–0.48 | 0.25 | Re | <LoD | <LoD |
Fe | <LoD | <LoD | Te | <LoD | <LoD | Os | <LoD | <LoD |
Mn | 0.10–3.8 | 1.6 | Cs | 0.080–0.52 | 0.31 | Ir | <LoD | <LoD |
Co | 0.050–1.6 | 0.55 | Ba | 2.6–6.7 | 5.1 | Pt | <LoD | <LoD |
Ni | 5.6–19 | 11 | La | <LoD–6.6 | <6.6 | Au | <LoD–0.20 | <0.20 |
Cu | 1.2–12 | 6.2 | Ce | 0.12–0.16 | 0.14 | Hg | <LoD | <LoD |
Zn | 0.60–45 | 16 | Pr | <LoD | <LoD | Tl | 0.050–2.4 | 0.33 |
Ga | <LoD–109 | <109 | Nd | <LoD | <LoD | Pb | 0.050–5.0 | 0.98 |
Br | 25,160–74,080 | 62,331 | Sm | <LoD | <LoD | Bi | 0.040–0.48 | 0.21 |
Rb | 43–140 | 111 | Eu | <LoD | <LoD | U | 0.32–3.3 | 2.6 |
Concentration (µg/L) | Concentration (µg/L) | |||||
---|---|---|---|---|---|---|
Element | FW a Values from Literature | Median | Range | SW b Values from Literature | Median | Range |
Ba | × c (2) | 3.5 | 1.1–22 | 4–21 [26,28] | 5.2 | 2.6–6.7 |
Br | × | 33 | 5.2–853 | 67,116 [26] | 65,600 | 25,160–74,080 |
Ca | × | 6732 | 915–24,663 | 412,824 [26] | 372,560 | 168,880–532,520 |
Cd | 0.2–2.0 [25](0.005) | 0.01 | 0.0080–0.019 | 2 [25] | <LoD | <LoD |
Cu | 0.2–5 [25] (1.3) | 0.18 | 0.013–1.6 | 5 [25] | 6.16 | 1.2–12 |
Hg | 0.1 [25] (0.002) | <LoD d | <LoD | 0.1 [25] | <LoD | <LoD |
Mg | × | 6082 | 893–19,571 | 1,293,292 [26] | 1,091,100 | 359,400–2,686,320 |
Ni | 15–150 [25] | 0.17 | 0.0060–5.2 | 15 [25] | 11 | 359,400–2,686,320 |
Pb | 1–5 [25] (15) | 0.01 | 0.0060–0.11 | 5 [25] | 0.22 | 0.019–0.77 |
Si | × | 10,001 | 1564–15,887 | 228–2809 [26,29] | 868 | 44–2060 |
Sr | × | 55 | 7.7–252 | 7666–7885.8 [26,30] | 4920 | 1886–7120 |
Zn | 5–50 [25] (5) | 0.74 | 0.024–4.7 | 0.013–50 [25,31] | 17 | 0.60–46 |
Element | Values from Literature (µg/L) | Concentration (µg/L) | |
---|---|---|---|
Median | Range | ||
Ba | 13.7 [26] | 10 | 4.0–22 |
Br | 67,116 [26] | 30,985 | 64.8–112,023 |
Ca | 412,824 [26] | 99,982 | 7429–339,042 |
Cu | 5 [25] | 1.6 | 0.13–5.5 |
Mg | 1,293,292 [26] | 429,281 | 6315–1,541,911 |
Ni | 15 [25] | 5.9 | 0.13–19 |
Si | 2809 [26] | 9490 | 1522–14,816 |
Sr | 7886 [26] | 1872 | 58–6736 |
Zn | 50 [25] | 4.4 | 0.15–14 |
FW | SW | MW | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Mean | Median | Range | Mean | Median | Range | Mean | Median | Range |
Salinity (‰) | 0.7 | 1 | <1–1 | 41 | 37 | 13–54 | 9.7 | 3 | 1–34 |
pH | 7.5 | 7.5 | 6.6–8.3 | 7.9 | 7.9 | 7.8–8.1 | 7.5 | 7.5 | 6.9–7.8 |
Dissolved O2 (ppm) | 92 | 98 | 26–130 | 98 | 96 | 84–120 | 98 | 99 | 90–104 |
ORP a (mV) | 152 | 152 | 76–191 | 128 | 132 | 88–176 | 137 | 145 | 19–186 |
Nitrate (mg/L) | 0.61 | 0.08 | 0.01–21 | NA b | NA | NA | 4.7 | 0.12 | 0.02–21 |
Element | Ba | Br | Ca | Cu | Mg | Ni | Si | Sr | Cl |
---|---|---|---|---|---|---|---|---|---|
River | |||||||||
North Coast | |||||||||
Fuluasou | |||||||||
Gasegase | |||||||||
Vailima | |||||||||
Vaisigano | |||||||||
Fagalii | |||||||||
Letogo | |||||||||
Laulii | |||||||||
Leuso | |||||||||
Namo | |||||||||
Solo | |||||||||
Eva | |||||||||
Falefa | |||||||||
Taelefaga | |||||||||
Lona | |||||||||
Tiavea | |||||||||
South Coast | |||||||||
Lepa | |||||||||
Mulivaifagatola | |||||||||
Piu | |||||||||
Togitogiga | |||||||||
Tafitoala | |||||||||
Lotofaga | |||||||||
Leafe | |||||||||
Faleaseela |
Masses | From 6 (Li) to 238 (U) covering 69 elements |
Integration Parameters | Total time: 20.0 s; Base interval: 10 ms; Mode: Threshold |
RF Power | 1465 W |
Sampler and Skimmer cones | Ni (ICPMS Cones Limited, Tarvin Nr. Chester, Cheshire, UK) |
Spray Chamber | Cyclonic (Spectro/AMETEK, Mahwah, NJ, USA) |
Torch Position (X:Y:Z) | (−2.2 mm: (2.0 mm:0.2 mm) |
Plasma Argon Flow Rate | 12.0 L·min−1 |
Auxiliary Argon Flow Rate | 2.40 L·min−1 |
Nebulizer Argon Flow Rate | 0.91–0.93 L·min−1 |
Nebulizer | SeaSpray (Glass Expansion, Pocasset, MA, USA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabieh, S.; Bayaraa, O.; Romeo, E.; Amosa, P.; Calnek, K.; Idaghdour, Y.; Ochsenkühn, M.A.; Amin, S.A.; Goldstein, G.; Bromage, T.G. MH-ICP-MS Analysis of the Freshwater and Saltwater Environmental Resources of Upolu Island, Samoa. Molecules 2020, 25, 4871. https://doi.org/10.3390/molecules25214871
Rabieh S, Bayaraa O, Romeo E, Amosa P, Calnek K, Idaghdour Y, Ochsenkühn MA, Amin SA, Goldstein G, Bromage TG. MH-ICP-MS Analysis of the Freshwater and Saltwater Environmental Resources of Upolu Island, Samoa. Molecules. 2020; 25(21):4871. https://doi.org/10.3390/molecules25214871
Chicago/Turabian StyleRabieh, Sasan, Odmaa Bayaraa, Emarosa Romeo, Patila Amosa, Khemet Calnek, Youssef Idaghdour, Michael A. Ochsenkühn, Shady A. Amin, Gary Goldstein, and Timothy G. Bromage. 2020. "MH-ICP-MS Analysis of the Freshwater and Saltwater Environmental Resources of Upolu Island, Samoa" Molecules 25, no. 21: 4871. https://doi.org/10.3390/molecules25214871
APA StyleRabieh, S., Bayaraa, O., Romeo, E., Amosa, P., Calnek, K., Idaghdour, Y., Ochsenkühn, M. A., Amin, S. A., Goldstein, G., & Bromage, T. G. (2020). MH-ICP-MS Analysis of the Freshwater and Saltwater Environmental Resources of Upolu Island, Samoa. Molecules, 25(21), 4871. https://doi.org/10.3390/molecules25214871