Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmacophores and Probabilities: Proposed Approach
- Max scheme. In this case, is simply the maximal value of :It will be reduced to the OR-consensus strategy (selection without ranking) if is set to 1 for all models. However, using performances of individual models estimated on a calibration set, we can associate athe ctivity of compounds with a probability according to Equation (2).
- Mean scheme. The value of is an arithmetic mean of over all pharmacophores matching a compound:
2.2. Benchmarking Studies
- the common hit approach, which ranks compounds according to the number of matched pharmacophore models;
- the commonly used OR-consensus strategy, which uses a set of pharmacophore models demonstrated reasonable performance on a dataset known of active and inactive compounds and selects compounds matching at least one of these models. OR-consensus selects compounds that are predicted as active, but cannot rank them.
3. Materials and Methods
3.1. DUD-E Data Sets
3.2. Pharmacophore Modeling and Virtual Screening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wermuth, C.G.; Ganellin, C.R.; Lindberg, P.; Mitscher, L.A. Glossary of Terms Used in Medicinal Chemistry (IUPAC Recommendations 1998). Pure Appl. Chem. 1998, 70, 1129–1143. [Google Scholar] [CrossRef]
- Vuorinen, A.; Schuster, D. Methods for Generating and Applying Pharmacophore Models as Virtual Screening Filters and for Bioactivity Profiling. Methods 2015, 71, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014, 66, 334–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, D.; Jiang, X.; Zhou, L.; Chen, J.; Chen, Z.; He, C.; Yang, K.; Liu, Y.; Pei, J.; Lai, L. Discovery of Multitarget Inhibitors by Combining Molecular Docking with Common Pharmacophore Matching. J. Med. Chem. 2008, 51, 7882–7888. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H.A. Small Molecule Inhibitors of the MDM2-p53 Interaction Discovered by Ensemble-Based Receptor Models. J. Am. Chem. Soc. 2007, 129, 12809–12814. [Google Scholar] [CrossRef] [PubMed]
- Hinsberger, S.; Hüsecken, K.; Groh, M.; Negri, M.; Haupenthal, J.; Hartmann, R.W. Discovery of Novel Bacterial RNA Polymerase Inhibitors: Pharmacophore-Based Virtual Screening and Hit Optimization. J. Med. Chem. 2013, 56, 8332–8338. [Google Scholar] [CrossRef] [PubMed]
- Temml, V.; Kaserer, T.; Kutil, Z.; Landa, P.; Vanek, T.; Schuster, D. Pharmacophore Modeling for COX-1 and -2 Inhibitors with LigandScout in Comparison to Discovery Studio. Future Med. Chem. 2014, 6, 1869–1881. [Google Scholar] [CrossRef] [PubMed]
- Kurczab, R.; Bojarski, A.J. New Strategy for Receptor-Based Pharmacophore Query Construction: A Case Study for 5-HT7 Receptor Ligands. J. Chem. Inf. Model. 2013, 53, 3233–3243. [Google Scholar] [CrossRef]
- Wieder, M.; Garon, A.; Perricone, U.; Boresch, S.; Seidel, T.; Maria Almerico, A.; Langer, T. Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 365–385. [Google Scholar] [CrossRef]
- Polishchuk, P.; Kutlushina, A.; Bashirova, D.; Mokshyna, O.; Madzhidov, T. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations. Int. J. Mol. Sci. 2019, 20, 5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, M.M.; Hush, D.R. Network Constraints and Multi-Objective Optimization for One-Class Classification. Neural Netw. 1996, 9, 463–474. [Google Scholar] [CrossRef]
- Varnek, A.; Baskin, I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis? J. Chem. Inf. Model. 2012, 52, 1413–1437. [Google Scholar] [CrossRef]
- Kutlushina, A.; Khakimova, A.; Madzhidov, T.; Polishchuk, P. Ligand-Based Pharmacophore Modeling Using Novel 3D Pharmacophore Signatures. Molecules 2018, 23, 3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef] [PubMed]
- ChemAxon Standardizer, version 19.12; Chemaxon: Budapest, Hungary, 2019.
- RDKit: Open-Source Cheminformatics. 2019.
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef] [PubMed]
- Truchon, J.-F.; Bayly, C.I. Evaluating Virtual Screening Methods: Good and Bad Metrics for the “Early Recognition” Problem. J. Chem. Inf. Model. 2007, 47, 488–508. [Google Scholar] [CrossRef]
ChEMBL ID | Target Name | Number of Compounds (ChEMBL) | Number of Compounds (DUD-E) | ||||
---|---|---|---|---|---|---|---|
Actives | Inactives | Total | Actives | Inactives | Total | ||
CHEMBL205 | Carbonic anhydrase II | 1394 | 2382 | 3776 | 492 | 31,172 | 31,664 |
CHEMBL206 | Estrogen receptor alpha | 395 | 1442 | 1837 | 383 | 20,685 | 21,068 |
CHEMBL208 | Progesterone receptor | 448 | 848 | 1296 | 293 | 15,650 | 15,943 |
CHEMBL213 | Beta-1 adrenergic receptor | 155 | 482 | 637 | 247 | 15,850 | 16,097 |
CHEMBL235 | Peroxisome proliferator-activated receptor gamma | 228 | 1052 | 1280 | 484 | 25,300 | 25,784 |
CHEMBL239 | Peroxisome proliferator-activated receptor alpha | 121 | 788 | 909 | 373 | 19,399 | 19,772 |
CHEMBL242 | Estrogen receptor beta | 477 | 972 | 1449 | 367 | 20,199 | 20,566 |
CHEMBL244 | Coagulation factor X | 676 | 2009 | 2685 | 537 | 28,325 | 28,862 |
CHEMBL251 | Adenosine 2a receptor | 1476 | 2276 | 3752 | 482 | 31,550 | 32,032 |
CHEMBL279 | Vascular endothelial growth factor receptor 2 | 139 | 4627 | 4766 | 409 | 24,950 | 25,359 |
CHEMBL284 | Dipeptidyl peptidase IV | 281 | 2277 | 2558 | 533 | 40,950 | 41,483 |
CHEMBL1862 | Tyrosine-protein kinase ABL | 411 | 1515 | 1926 | 182 | 10,750 | 10,932 |
CHEMBL1871 | Androgen Receptor | 586 | 967 | 1553 | 269 | 14,350 | 14,619 |
CHEMBL1994 | Mineralocorticoid receptor | 102 | 532 | 634 | 94 | 5150 | 5244 |
CHEMBL2971 | Tyrosine-protein kinase JAK2 | 131 | 2545 | 2676 | 107 | 6500 | 6607 |
CHEMBL3105 | Poly [ADP-ribose] polymerase-1 | 259 | 1138 | 1397 | 508 | 30,050 | 30,558 |
ChEMBL ID | Target Name | Number of Models | Number of Models with Number of Features ≥ 4 a |
---|---|---|---|
CHEMBL205 | Carbonic anhydrase II | 270 | 260 |
CHEMBL206 | Estrogen receptor alpha | 27 | 26 |
CHEMBL208 | Progesterone receptor | 37 | 32 |
CHEMBL213 | Beta-1 adrenergic receptor | 19 | 17 |
CHEMBL235 | Peroxisome proliferator-activated receptor gamma | 31 | 26 |
CHEMBL239 | Peroxisome proliferator-activated receptor alpha | 15 | 15 |
CHEMBL242 | Estrogen receptor beta | 61 | 53 |
CHEMBL244 | Coagulation factor X | 45 | 35 |
CHEMBL251 | Adenosine A2a receptor | 110 | 101 |
CHEMBL279 | Vascular endothelial growth factor receptor 2 | 12 | 11 |
CHEMBL284 | Dipeptidyl peptidase IV | 34 | 34 |
CHEMBL1862 | Tyrosine-protein kinase ABL | 27 | 27 |
CHEMBL1871 | Androgen Receptor | 50 | 48 |
CHEMBL1994 | Mineralocorticoid receptor | 6 | 6 |
CHEMBL2971 | Tyrosine-protein kinase JAK2 | 4 | 1 |
CHEMBL3105 | Poly [ADP-ribose] polymerase-1 | 43 | 40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madzhidov, T.I.; Rakhimbekova, A.; Kutlushuna, A.; Polishchuk, P. Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores. Molecules 2020, 25, 385. https://doi.org/10.3390/molecules25020385
Madzhidov TI, Rakhimbekova A, Kutlushuna A, Polishchuk P. Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores. Molecules. 2020; 25(2):385. https://doi.org/10.3390/molecules25020385
Chicago/Turabian StyleMadzhidov, Timur I., Assima Rakhimbekova, Alina Kutlushuna, and Pavel Polishchuk. 2020. "Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores" Molecules 25, no. 2: 385. https://doi.org/10.3390/molecules25020385
APA StyleMadzhidov, T. I., Rakhimbekova, A., Kutlushuna, A., & Polishchuk, P. (2020). Probabilistic Approach for Virtual Screening Based on Multiple Pharmacophores. Molecules, 25(2), 385. https://doi.org/10.3390/molecules25020385