Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. General
4.2. Radiolabeling of ADAPT6
4.3. Animal Studies
Compound | Proposed Mechanism of Action in the Kidney | Administration Route | Administration Respective to the [99mTc]Tc(CO)3-ADAPT6 | Dose | LD50 |
---|---|---|---|---|---|
Lysine | Blocks megalin ligand-binding domains [48] | i.v. | Co-injection | 1200 mg/kg | 4000 mg/kg (i.p., rat) |
Gelofusine | Blocks megalin ligand-binding domains [49] | i.v. | Co-injection | 160 mg/kg | n/a |
Sodium maleate | Inhibits ATP-mediated endocytosis [44,45,50] | i.v. | 5 min before | 480 mg/kg | 600 mg/kg (i.p., rat) 3380 mg/kg (oral, rat) |
Mannitol | Osmotic diuretic, reduces contact time with scavenger receptors [31] | i.v. | 5 min before | 480 mg/kg | 7470 mg/kg (i.v., mouse) |
Furosemide | Diuretic, reduces contact time with scavenger receptors [31] | i.v. | 5 min before | 3 mg/kg | 800 mg/kg (i.p., rats) |
Fructose | Inhibits ATP-mediated endocytosis [47] | i.p. | 5 min before | 3.6 and 9 g/kg (20 and 50 mmol/kg) | 15 g/kg (83 mmol/kg) |
Probenecid | Inhibits organic anion transporter and reduces renal excretion of drugs [31] | i.p. | 1 h before | 24 mg/kg | 1000 mg/kg (i.p., mouse) |
Colchicine | Inhibits polymerization of microtubules and recycling of megalin [51] | i.p. | 5 h before | 1.2 mg/kg | 1.6 mg/kg (i.p., mouse) |
4.4. Autoradiography
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tolmachev, V.; Mume, E.; Sjöberg, S.; Fredrik, F.Y.; Orlova, A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Tran, T.A.; Rosik, D.; Sjöberg, A.; Abrahmsén, L.; Orlova, A. Tumor targeting using affibody molecules: Interplay of affinity, target expression level, and binding site composition. J. Nucl. Med. 2012, 53, 953–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garousi, J.; Lindbo, S.; Borin, J.; von Witting, E.; Vorobyeva, A.; Oroujeni, M.; Mitran, B.; Orlova, A.; Buijs, J.; Tolmachev, V.; et al. Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours. Eur. J. Pharm. Biopharm. 2019, 134, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 2009, 8, 2861–2871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasniqi, A.; D’Huyvetter, M.; Devoogdt, N.; Frejd, F.Y.; Sörensen, J.; Orlova, A.; Keyaerts, M.; Tolmachev, V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J. Nucl. Med. 2018, 59, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Miao, Z.; Levi, J.; Cheng, Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 2011, 41, 1037–1047. [Google Scholar] [CrossRef] [Green Version]
- Stern, L.A.; Case, B.A.; Hackel, B.J. Alternative non-antibody protein scaffolds for molecular imaging of cancer. Curr. Opin. Chem. Eng. 2013, 2, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Sandberg, D.; Sandström, M.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Åström, G.; Lubberink, M.; Garske-Román, U.; Carlsson, J.; et al. First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the 111In-ABY-025 Affibody Molecule. J. Nucl. Med. 2014, 55, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; et al. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics 2016, 6, 262–271. [Google Scholar] [CrossRef]
- Bragina, O.; von Witting, E.; Garousi, J.; Zelchan, R.; Sandström, M.; Orlova, A.; Medvedeva, A.; Doroshenko, A.; Vorobyeva, A.; Lindbo, S.; et al. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J. Nucl. Med. 2020, in press. [Google Scholar] [CrossRef]
- Ackerman, S.E.; Currier, N.V.; Bergen, J.M.; Cochran, J.R. Cystine-knot peptides: Emerging tools for cancer imaging and therapy. Expert Rev. Proteomic. 2014, 11, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.; Sosabowski, J.; Livanos, M.; Leyton, J.; Vigor, K.; Bhavsar, G.; Nagy-Davidescu, G.; Rashid, M.; Miranda, E.; Yeung, J.; et al. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 288–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobyeva, A.; Bragina, O.; Altai, M.; Mitran, B.; Orlova, A.; Shulga, A.; Proshkina, G.; Chernov, V.; Tolmachev, V.; Deyev, S. Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media Mol. Imaging 2018, 2018, 6930425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobyeva, A.; Schulga, A.; Konovalova, E.; Güler, R.; Löfblom, J.; Sandström, M.; Garousi, J.; Chernov, V.; Bragina, O.; Orlova, A.; et al. Optimal composition and position of histidine-containing tags improves biodistribution of 99m Tc-labeled DARPin G3. Sci. Rep. 2019, 9, 9405. [Google Scholar] [CrossRef] [Green Version]
- Deyev, S.; Vorobyeva, A.; Schulga, A.; Proshkina, G.; Güler, R.; Löfblom, J.; Mitran, B.; Garousi, J.; Altai, M.; Buijs, J.; et al. Comparative evaluation of two DARPin variants: Effect of affinity, size, and label on tumor targeting properties. Mol. Pharm. 2019, 3, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Deyev, S.; Vorobyeva, A.; Schulga, A.; Abouzayed, A.; Günther, T.; Garousi, J.; Konovalova, E.; Ding, H.; Gräslund, T.; Orlova, A.; et al. Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. Int. J. Biol. Macromol. 2020, 145, 216–225. [Google Scholar] [CrossRef]
- Garousi, J.; Lindbo, S.; Nilvebrant, J.; Åstrand, M.; Buijs, J.; Sandström, M.; Honarvar, H.; Orlova, A.; Tolmachev, V.; Hober, S. ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015, 75, 4364–4371. [Google Scholar] [CrossRef] [Green Version]
- Nilvebrant, J.; Hober, S. The albumin-binding domain as a scaffold for protein engineering. Comput. Struct. Biotec. 2013, 6, e201303009. [Google Scholar] [CrossRef] [Green Version]
- Nilvebrant, J.; Åstrand, M.; Georgieva-Kotseva, M.; Björnmalm, M.; Löfblom, J.; Hober, S. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS ONE 2014, 9, e103094. [Google Scholar] [CrossRef]
- Lindbo, S.; Garousi, J.; Åstrand, M.; Honarvar, H.; Orlova, A.; Hober, S.; Tolmachev, V. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjug. Chem. 2016, 27, 716–726. [Google Scholar] [CrossRef]
- Lindbo, S.; Garousi, J.; Mitran, B.; Altai, M.; Buijs, J.; Orlova, A.; Hober, S.; Tolmachev, V. Radionuclide Tumor Targeting Using ADAPT Scaffold Proteins: Aspects of Label Positioning and Residualizing Properties of the Label. J. Nucl. Med. 2018, 59, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindbo, S.; Garousi, J.; Mitran, B.; Vorobyeva, A.; Oroujeni, M.; Orlova, A.; Hober, S.; Tolmachev, V. Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga. Mol. Pharm. 2018, 15, 2674–2683. [Google Scholar] [CrossRef]
- Von Witting, E. The ADAPT Scaffold as a Tool for Diagnostic Imaging and Targeted Therapy. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, June 2020. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1429650&dswid=7799 (accessed on 26 September 2020).
- Von Witting, E.; Garousi, J.; Lindbo, S.; Vorobyeva, A.; Altai, M.; Oroujeni, M.; Mitran, B.; Orlova, A.; Hober, S.; Tolmachev, V. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur. J. Pharm. Biopharm. 2019, 140, 109–120. [Google Scholar] [CrossRef]
- Garousi, J.; Lindbo, S.; Mitran, B.; Buijs, J.; Vorobyeva, A.; Orlova, A.; Tolmachev, V.; Hober, S. Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Sci. Rep. 2017, 7, 14780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolmachev, V.; Orlova, A.; Pehrson, R.; Galli, J.; Baastrup, B.; Andersson, K.; Sandström, M.; Rosik, D.; Carlsson, J.; Lundqvist, H.; et al. Radionuclide Therapy of HER2-Positive Microxenografts Using a 177Lu-Labeled HER2-Specific Affibody Molecule. Cancer Res. 2007, 67, 2773–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenberg, D.M.; Chatal, J.F.; Barbet, J.; Boerman, O.; Sharkey, R.M. Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther. 2007, 2, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honarvar, H.; Westerlund, K.; Altai, M.; Sandström, M.; Orlova, A.; Tolmachev, V.; Karlström, A.E. Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors. Theranostics 2016, 6, 93–103. [Google Scholar] [CrossRef]
- Westerlund, K.; Altai, M.; Mitran, B.; Konijnenberg, M.; Oroujeni, M.; Atterby, C.; de Jong, M.; Orlova, A.; Mattsson, J.; Micke, P.; et al. Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid–Mediated Pretargeting: In Vivo Proof of Principle. J. Nucl. Med. 2018, 59, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Rolleman, E.J.; Krenning, E.P.; van Gameren, A.; Bernard, B.F.; de Jong, M. Uptake of [111In-DTPA0] Octreotide in the Rat Kidney Is Inhibited by Colchicine and Not by Fructose. J. Nucl. Med. 2004, 45, 709–713. [Google Scholar]
- Stahl, A.R.; Wagner, B.; Poethko, T.; Perutka, M.; Wester, H.J.; Essler, M.; Heemann, U.; Schwaiger, M.; Lutz, J. Renal accumulation of [111In] DOTATOC in rats: Influence of inhibitors of the organic ion transport and diuretics. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 2129–2134. [Google Scholar] [CrossRef]
- Melis, M.; Krenning, E.P.; Bernard, B.F.; Barone, R.; Visser, T.J.; de Jong, M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Altai, M.; Garousi, J.; Rinne, S.S.; Schulga, A.; Deyev, S.; Vorobyeva, A. On the prevention of kidney uptake of radiolabeled DARPins. Eur. J. Nucl. Med. Mol. Imaging Res. 2020, 10, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garousi, J.; Vorobyeva, A.; Altai, M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020, 25, 2673. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.I.; Birn, H. Megalin and cubilin: Multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 256–266. [Google Scholar] [CrossRef]
- De Jong, M.; Barone, R.; Krenning, E.; Bernard, B.; Melis, M.; Visser, T.; Gekle, M.; Willnow, T.E.; Walrand, S.; Jamar, F.; et al. Megalin is essential for renal proximal tubule reabsorption of (111) In-DTPA-octreotide. J. Nucl. Med. 2005, 46, 1696–1700. [Google Scholar]
- Vegt, E.; Melis, M.; Eek, A.; de Visser, M.; Brom, M.; Oyen, W.J.; Gotthardt, M.; de Jong, M.; Boerman, O.C. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Gainkam, L.O.; Caveliers, V.; Devoogdt, N.; Vanhove, C.; Xavier, C.; Boerman, O.; Muyldermans, S.; Bossuyt, A.; Lahoutte, T. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol. Imaging 2011, 6, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Altai, M.; Varasteh, Z.; Andersson, K.; Eek, A.; Boerman, O.; Orlova, A. In vivo and in vitro studies on renal uptake of radiolabeled affibody molecules for imaging of HER2 expression in tumors. Cancer Biother. Radiopharm. 2013, 28, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Behr, T.M.; Goldenberg, D.M.; Becker, W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: Present status, future prospects and limitations. Eur. J. Nucl. Med. 1998, 25, 201–212. [Google Scholar] [CrossRef]
- Vegt, E.; de Jong, M.; Wetzels, J.F.; Masereeuw, R.; Melis, M.; Oyen, W.J.; Gotthardt, M.; Boerman, O.C. Renal Toxicity of Radiolabeled Peptides and Antibody Fragments: Mechanisms, Impact on Radionuclide Therapy, and Strategies for Prevention. J. Nucl. Med. 2010, 51, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Gotthardt, M.; van Eerd-Vismale, J.; Oyen, W.J.; de Jong, M.; Zhang, H.; Rolleman, E.; Maecke, H.R.; Béhé, M.; Boerman, O. Indication for different mechanisms of kidney uptake of radiolabeled peptides. J. Nucl. Med. 2007, 48, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Galaske, R.G.; Arbesman, H.; Van Liew, J.B. Renal albumin reabsorption in normal and sodium maleate-treated rats. Ren. Physiol. 1985, 5, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.I.; Verroust, P.J. Megalin and cubilin, role in proximal tubule function and during development. Pediatr. Nephrol. 2002, 17, 993–999. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Rolleman, E.J.; Bernard, B.F.; Visser, T.J.; Bakker, W.H.; Breeman, W.A.; Krenning, E.P. Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J. Nucl. Med. 1996, 37, 1388–1392. [Google Scholar] [PubMed]
- Verani, R.R.; Brewer, E.D.; Ince, A.; Gibson, J.; Bulger, R.E. Proximal tubular necrosis associated with maleic acid administration to the rat. Lab Investig. 1982, 46, 79–88. [Google Scholar]
- Burch, H.B.; Choi, S.; Dence, C.N.; Alvey, T.R.; Cole, B.R.; Lowry, O.H. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem. 1980, 255, 8239–8344. [Google Scholar]
- Sun, Y.; Lu, X.; Danser, A.H.J. Megalin: A Novel Determinant of Renin-Angiotensin System Activity in the Kidney? Curr. Hypertens. Rep. 2020, 22, 30. [Google Scholar] [CrossRef] [Green Version]
- Ten Dam, M.A.; Branten, A.J.; Klasen, I.S.; Wetzels, J.F. The gelatin-derived plasma substitute Gelofusine causes low-molecular-weight proteinuria by decreasing tubular protein reabsorption. J. Crit. Care 2001, 16, 115–120. [Google Scholar] [CrossRef]
- Rogulski, J.; Pacanis, A. Effects of maleate on CoA metabolism in rat kidney. Curr. Probl. Clin. Biochem. 1977, 8, 406–415. [Google Scholar]
- Gutmann, E.J.; Niles, J.L.; McCluskey, R.T.; Brown, D. Colchicine-induced redistribution of an apical membrane glycoprotein (gp330) in proximal tubules. Am. J. Physiol. 1989, 257, C397–C407. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Blood | Salivary Glands | Liver | Spleen | GI Tract | Carcass | |
---|---|---|---|---|---|---|
Control | 0.19 ± 0.02 | 0.15 ± 0.02 | 1.2 ± 0.1 | 0.47 ± 0.04 | 1.0 ± 0.1 | 1.8 ± 1.3 |
Lysine | 0.10 ± 0.01 | 0.10 ± 0.02 | 1.5 ± 0.1 | 0.7 ± 0.2 | 1.2 ± 0.5 | 1.4 ± 0.2 |
Gelofusine | 0.09 ± 0.01 | 0.11 ± 0.01 | 1.3 ± 0.1 | 0.3 ± 0.1 | 1.1 ± 0.6 | 1.3 ± 0.1 |
Mannitol | 0.21 ± 0.02 | 0.15 ± 0.06 | 1.1 ± 0.2 | 0.6 ± 0.1 | 1.3 ± 0.2 | 2.0 ± 0.7 |
Furosemide | 0.12 ± 0.02 | 0.14 ± 0.02 | 1.2 ± 0.1 | 0.5 ± 0.1 | 1.3 ± 0.5 | 1.8 ± 0.2 |
Probenecid | 0.23 ± 0.03 | 0.13 ± 0.02 | 1.1 ± 0.1 | 0.6 ± 0.1 | 0.9 ± 0.1 | 1.6 ± 0.2 |
Colchicine | 0.25 ± 0.03 | 0.12 ± 0.05 | 1.0 ± 0.3 | 0.7 ± 0.2 | 0.8 ± 0.3 | 1.7 ± 0.4 |
Fructose 20 mmol/kg | 0.25 ± 0.02 | 0.21 ± 0.03 | 1.4 ± 0.2 | 0.5 ± 0.1 | 1.4 ± 0.1 | 2.5 ± 0.3 |
Fructose 50 mmol/kg | 2.0 ± 1.0 * | 0.7 ± 0.4 * | 4.1 ± 1.1 * | 1.7 ± 0.5 * | 5.4 ± 1.6 * | 14.4 ± 6.6 * |
Maleate | 0.13 ± 0.06 | 0.11 ± 0.03 | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.9 ± 0.3 | 1.4 ± 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorobyeva, A.; Oroujeni, M.; Lindbo, S.; Hober, S.; Xu, T.; Liu, Y.; Rinne, S.S.; Garousi, J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules 2020, 25, 4448. https://doi.org/10.3390/molecules25194448
Vorobyeva A, Oroujeni M, Lindbo S, Hober S, Xu T, Liu Y, Rinne SS, Garousi J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules. 2020; 25(19):4448. https://doi.org/10.3390/molecules25194448
Chicago/Turabian StyleVorobyeva, Anzhelika, Maryam Oroujeni, Sarah Lindbo, Sophia Hober, Tianqi Xu, Yongsheng Liu, Sara S. Rinne, and Javad Garousi. 2020. "Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein" Molecules 25, no. 19: 4448. https://doi.org/10.3390/molecules25194448
APA StyleVorobyeva, A., Oroujeni, M., Lindbo, S., Hober, S., Xu, T., Liu, Y., Rinne, S. S., & Garousi, J. (2020). Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules, 25(19), 4448. https://doi.org/10.3390/molecules25194448