Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein
Abstract
1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. General
4.2. Radiolabeling of ADAPT6
4.3. Animal Studies
Compound | Proposed Mechanism of Action in the Kidney | Administration Route | Administration Respective to the [99mTc]Tc(CO)3-ADAPT6 | Dose | LD50 |
---|---|---|---|---|---|
Lysine | Blocks megalin ligand-binding domains [48] | i.v. | Co-injection | 1200 mg/kg | 4000 mg/kg (i.p., rat) |
Gelofusine | Blocks megalin ligand-binding domains [49] | i.v. | Co-injection | 160 mg/kg | n/a |
Sodium maleate | Inhibits ATP-mediated endocytosis [44,45,50] | i.v. | 5 min before | 480 mg/kg | 600 mg/kg (i.p., rat) 3380 mg/kg (oral, rat) |
Mannitol | Osmotic diuretic, reduces contact time with scavenger receptors [31] | i.v. | 5 min before | 480 mg/kg | 7470 mg/kg (i.v., mouse) |
Furosemide | Diuretic, reduces contact time with scavenger receptors [31] | i.v. | 5 min before | 3 mg/kg | 800 mg/kg (i.p., rats) |
Fructose | Inhibits ATP-mediated endocytosis [47] | i.p. | 5 min before | 3.6 and 9 g/kg (20 and 50 mmol/kg) | 15 g/kg (83 mmol/kg) |
Probenecid | Inhibits organic anion transporter and reduces renal excretion of drugs [31] | i.p. | 1 h before | 24 mg/kg | 1000 mg/kg (i.p., mouse) |
Colchicine | Inhibits polymerization of microtubules and recycling of megalin [51] | i.p. | 5 h before | 1.2 mg/kg | 1.6 mg/kg (i.p., mouse) |
4.4. Autoradiography
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tolmachev, V.; Mume, E.; Sjöberg, S.; Fredrik, F.Y.; Orlova, A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Tran, T.A.; Rosik, D.; Sjöberg, A.; Abrahmsén, L.; Orlova, A. Tumor targeting using affibody molecules: Interplay of affinity, target expression level, and binding site composition. J. Nucl. Med. 2012, 53, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Garousi, J.; Lindbo, S.; Borin, J.; von Witting, E.; Vorobyeva, A.; Oroujeni, M.; Mitran, B.; Orlova, A.; Buijs, J.; Tolmachev, V.; et al. Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours. Eur. J. Pharm. Biopharm. 2019, 134, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.M.; Wittrup, K.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 2009, 8, 2861–2871. [Google Scholar] [CrossRef] [PubMed]
- Krasniqi, A.; D’Huyvetter, M.; Devoogdt, N.; Frejd, F.Y.; Sörensen, J.; Orlova, A.; Keyaerts, M.; Tolmachev, V. Same-Day Imaging Using Small Proteins: Clinical Experience and Translational Prospects in Oncology. J. Nucl. Med. 2018, 59, 885–891. [Google Scholar] [CrossRef]
- Miao, Z.; Levi, J.; Cheng, Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids 2011, 41, 1037–1047. [Google Scholar] [CrossRef]
- Stern, L.A.; Case, B.A.; Hackel, B.J. Alternative non-antibody protein scaffolds for molecular imaging of cancer. Curr. Opin. Chem. Eng. 2013, 2, 425–432. [Google Scholar] [CrossRef]
- Sörensen, J.; Sandberg, D.; Sandström, M.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Åström, G.; Lubberink, M.; Garske-Román, U.; Carlsson, J.; et al. First-in-Human Molecular Imaging of HER2 Expression in Breast Cancer Metastases Using the 111In-ABY-025 Affibody Molecule. J. Nucl. Med. 2014, 55, 730–735. [Google Scholar] [CrossRef]
- Sörensen, J.; Velikyan, I.; Sandberg, D.; Wennborg, A.; Feldwisch, J.; Tolmachev, V.; Orlova, A.; Sandström, M.; Lubberink, M.; Olofsson, H.; et al. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics 2016, 6, 262–271. [Google Scholar] [CrossRef]
- Bragina, O.; von Witting, E.; Garousi, J.; Zelchan, R.; Sandström, M.; Orlova, A.; Medvedeva, A.; Doroshenko, A.; Vorobyeva, A.; Lindbo, S.; et al. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer. J. Nucl. Med. 2020, in press. [Google Scholar] [CrossRef]
- Ackerman, S.E.; Currier, N.V.; Bergen, J.M.; Cochran, J.R. Cystine-knot peptides: Emerging tools for cancer imaging and therapy. Expert Rev. Proteomic. 2014, 11, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.; Sosabowski, J.; Livanos, M.; Leyton, J.; Vigor, K.; Bhavsar, G.; Nagy-Davidescu, G.; Rashid, M.; Miranda, E.; Yeung, J.; et al. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Vorobyeva, A.; Bragina, O.; Altai, M.; Mitran, B.; Orlova, A.; Shulga, A.; Proshkina, G.; Chernov, V.; Tolmachev, V.; Deyev, S. Comparative Evaluation of Radioiodine and Technetium-Labeled DARPin 9_29 for Radionuclide Molecular Imaging of HER2 Expression in Malignant Tumors. Contrast Media Mol. Imaging 2018, 2018, 6930425. [Google Scholar] [CrossRef] [PubMed]
- Vorobyeva, A.; Schulga, A.; Konovalova, E.; Güler, R.; Löfblom, J.; Sandström, M.; Garousi, J.; Chernov, V.; Bragina, O.; Orlova, A.; et al. Optimal composition and position of histidine-containing tags improves biodistribution of 99m Tc-labeled DARPin G3. Sci. Rep. 2019, 9, 9405. [Google Scholar] [CrossRef]
- Deyev, S.; Vorobyeva, A.; Schulga, A.; Proshkina, G.; Güler, R.; Löfblom, J.; Mitran, B.; Garousi, J.; Altai, M.; Buijs, J.; et al. Comparative evaluation of two DARPin variants: Effect of affinity, size, and label on tumor targeting properties. Mol. Pharm. 2019, 3, 995–1008. [Google Scholar] [CrossRef] [PubMed]
- Deyev, S.; Vorobyeva, A.; Schulga, A.; Abouzayed, A.; Günther, T.; Garousi, J.; Konovalova, E.; Ding, H.; Gräslund, T.; Orlova, A.; et al. Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. Int. J. Biol. Macromol. 2020, 145, 216–225. [Google Scholar] [CrossRef]
- Garousi, J.; Lindbo, S.; Nilvebrant, J.; Åstrand, M.; Buijs, J.; Sandström, M.; Honarvar, H.; Orlova, A.; Tolmachev, V.; Hober, S. ADAPT, a novel scaffold protein-based probe for radionuclide imaging of molecular targets that are expressed in disseminated cancers. Cancer Res. 2015, 75, 4364–4371. [Google Scholar] [CrossRef]
- Nilvebrant, J.; Hober, S. The albumin-binding domain as a scaffold for protein engineering. Comput. Struct. Biotec. 2013, 6, e201303009. [Google Scholar] [CrossRef]
- Nilvebrant, J.; Åstrand, M.; Georgieva-Kotseva, M.; Björnmalm, M.; Löfblom, J.; Hober, S. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS ONE 2014, 9, e103094. [Google Scholar] [CrossRef]
- Lindbo, S.; Garousi, J.; Åstrand, M.; Honarvar, H.; Orlova, A.; Hober, S.; Tolmachev, V. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjug. Chem. 2016, 27, 716–726. [Google Scholar] [CrossRef]
- Lindbo, S.; Garousi, J.; Mitran, B.; Altai, M.; Buijs, J.; Orlova, A.; Hober, S.; Tolmachev, V. Radionuclide Tumor Targeting Using ADAPT Scaffold Proteins: Aspects of Label Positioning and Residualizing Properties of the Label. J. Nucl. Med. 2018, 59, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Lindbo, S.; Garousi, J.; Mitran, B.; Vorobyeva, A.; Oroujeni, M.; Orlova, A.; Hober, S.; Tolmachev, V. Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga. Mol. Pharm. 2018, 15, 2674–2683. [Google Scholar] [CrossRef]
- Von Witting, E. The ADAPT Scaffold as a Tool for Diagnostic Imaging and Targeted Therapy. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, June 2020. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1429650&dswid=7799 (accessed on 26 September 2020).
- Von Witting, E.; Garousi, J.; Lindbo, S.; Vorobyeva, A.; Altai, M.; Oroujeni, M.; Mitran, B.; Orlova, A.; Hober, S.; Tolmachev, V. Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT6. Eur. J. Pharm. Biopharm. 2019, 140, 109–120. [Google Scholar] [CrossRef]
- Garousi, J.; Lindbo, S.; Mitran, B.; Buijs, J.; Vorobyeva, A.; Orlova, A.; Tolmachev, V.; Hober, S. Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Sci. Rep. 2017, 7, 14780. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Orlova, A.; Pehrson, R.; Galli, J.; Baastrup, B.; Andersson, K.; Sandström, M.; Rosik, D.; Carlsson, J.; Lundqvist, H.; et al. Radionuclide Therapy of HER2-Positive Microxenografts Using a 177Lu-Labeled HER2-Specific Affibody Molecule. Cancer Res. 2007, 67, 2773–2782. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.M.; Chatal, J.F.; Barbet, J.; Boerman, O.; Sharkey, R.M. Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther. 2007, 2, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Honarvar, H.; Westerlund, K.; Altai, M.; Sandström, M.; Orlova, A.; Tolmachev, V.; Karlström, A.E. Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors. Theranostics 2016, 6, 93–103. [Google Scholar] [CrossRef]
- Westerlund, K.; Altai, M.; Mitran, B.; Konijnenberg, M.; Oroujeni, M.; Atterby, C.; de Jong, M.; Orlova, A.; Mattsson, J.; Micke, P.; et al. Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid–Mediated Pretargeting: In Vivo Proof of Principle. J. Nucl. Med. 2018, 59, 1092–1098. [Google Scholar] [CrossRef]
- Rolleman, E.J.; Krenning, E.P.; van Gameren, A.; Bernard, B.F.; de Jong, M. Uptake of [111In-DTPA0] Octreotide in the Rat Kidney Is Inhibited by Colchicine and Not by Fructose. J. Nucl. Med. 2004, 45, 709–713. [Google Scholar]
- Stahl, A.R.; Wagner, B.; Poethko, T.; Perutka, M.; Wester, H.J.; Essler, M.; Heemann, U.; Schwaiger, M.; Lutz, J. Renal accumulation of [111In] DOTATOC in rats: Influence of inhibitors of the organic ion transport and diuretics. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 2129–2134. [Google Scholar] [CrossRef]
- Melis, M.; Krenning, E.P.; Bernard, B.F.; Barone, R.; Visser, T.J.; de Jong, M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Altai, M.; Garousi, J.; Rinne, S.S.; Schulga, A.; Deyev, S.; Vorobyeva, A. On the prevention of kidney uptake of radiolabeled DARPins. Eur. J. Nucl. Med. Mol. Imaging Res. 2020, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Garousi, J.; Vorobyeva, A.; Altai, M. Influence of Several Compounds and Drugs on the Renal Uptake of Radiolabeled Affibody Molecules. Molecules 2020, 25, 2673. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.I.; Birn, H. Megalin and cubilin: Multifunctional endocytic receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 256–266. [Google Scholar] [CrossRef]
- De Jong, M.; Barone, R.; Krenning, E.; Bernard, B.; Melis, M.; Visser, T.; Gekle, M.; Willnow, T.E.; Walrand, S.; Jamar, F.; et al. Megalin is essential for renal proximal tubule reabsorption of (111) In-DTPA-octreotide. J. Nucl. Med. 2005, 46, 1696–1700. [Google Scholar]
- Vegt, E.; Melis, M.; Eek, A.; de Visser, M.; Brom, M.; Oyen, W.J.; Gotthardt, M.; de Jong, M.; Boerman, O.C. Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 623–632. [Google Scholar] [CrossRef]
- Gainkam, L.O.; Caveliers, V.; Devoogdt, N.; Vanhove, C.; Xavier, C.; Boerman, O.; Muyldermans, S.; Bossuyt, A.; Lahoutte, T. Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol. Imaging 2011, 6, 85–92. [Google Scholar] [CrossRef]
- Altai, M.; Varasteh, Z.; Andersson, K.; Eek, A.; Boerman, O.; Orlova, A. In vivo and in vitro studies on renal uptake of radiolabeled affibody molecules for imaging of HER2 expression in tumors. Cancer Biother. Radiopharm. 2013, 28, 187–195. [Google Scholar] [CrossRef]
- Behr, T.M.; Goldenberg, D.M.; Becker, W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: Present status, future prospects and limitations. Eur. J. Nucl. Med. 1998, 25, 201–212. [Google Scholar] [CrossRef]
- Vegt, E.; de Jong, M.; Wetzels, J.F.; Masereeuw, R.; Melis, M.; Oyen, W.J.; Gotthardt, M.; Boerman, O.C. Renal Toxicity of Radiolabeled Peptides and Antibody Fragments: Mechanisms, Impact on Radionuclide Therapy, and Strategies for Prevention. J. Nucl. Med. 2010, 51, 1049–1058. [Google Scholar] [CrossRef]
- Gotthardt, M.; van Eerd-Vismale, J.; Oyen, W.J.; de Jong, M.; Zhang, H.; Rolleman, E.; Maecke, H.R.; Béhé, M.; Boerman, O. Indication for different mechanisms of kidney uptake of radiolabeled peptides. J. Nucl. Med. 2007, 48, 596–601. [Google Scholar] [CrossRef]
- Cho, J.; Galaske, R.G.; Arbesman, H.; Van Liew, J.B. Renal albumin reabsorption in normal and sodium maleate-treated rats. Ren. Physiol. 1985, 5, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.I.; Verroust, P.J. Megalin and cubilin, role in proximal tubule function and during development. Pediatr. Nephrol. 2002, 17, 993–999. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Rolleman, E.J.; Bernard, B.F.; Visser, T.J.; Bakker, W.H.; Breeman, W.A.; Krenning, E.P. Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J. Nucl. Med. 1996, 37, 1388–1392. [Google Scholar] [PubMed]
- Verani, R.R.; Brewer, E.D.; Ince, A.; Gibson, J.; Bulger, R.E. Proximal tubular necrosis associated with maleic acid administration to the rat. Lab Investig. 1982, 46, 79–88. [Google Scholar]
- Burch, H.B.; Choi, S.; Dence, C.N.; Alvey, T.R.; Cole, B.R.; Lowry, O.H. Metabolic effects of large fructose loads in different parts of the rat nephron. J. Biol. Chem. 1980, 255, 8239–8344. [Google Scholar]
- Sun, Y.; Lu, X.; Danser, A.H.J. Megalin: A Novel Determinant of Renin-Angiotensin System Activity in the Kidney? Curr. Hypertens. Rep. 2020, 22, 30. [Google Scholar] [CrossRef]
- Ten Dam, M.A.; Branten, A.J.; Klasen, I.S.; Wetzels, J.F. The gelatin-derived plasma substitute Gelofusine causes low-molecular-weight proteinuria by decreasing tubular protein reabsorption. J. Crit. Care 2001, 16, 115–120. [Google Scholar] [CrossRef]
- Rogulski, J.; Pacanis, A. Effects of maleate on CoA metabolism in rat kidney. Curr. Probl. Clin. Biochem. 1977, 8, 406–415. [Google Scholar]
- Gutmann, E.J.; Niles, J.L.; McCluskey, R.T.; Brown, D. Colchicine-induced redistribution of an apical membrane glycoprotein (gp330) in proximal tubules. Am. J. Physiol. 1989, 257, C397–C407. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Blood | Salivary Glands | Liver | Spleen | GI Tract | Carcass | |
---|---|---|---|---|---|---|
Control | 0.19 ± 0.02 | 0.15 ± 0.02 | 1.2 ± 0.1 | 0.47 ± 0.04 | 1.0 ± 0.1 | 1.8 ± 1.3 |
Lysine | 0.10 ± 0.01 | 0.10 ± 0.02 | 1.5 ± 0.1 | 0.7 ± 0.2 | 1.2 ± 0.5 | 1.4 ± 0.2 |
Gelofusine | 0.09 ± 0.01 | 0.11 ± 0.01 | 1.3 ± 0.1 | 0.3 ± 0.1 | 1.1 ± 0.6 | 1.3 ± 0.1 |
Mannitol | 0.21 ± 0.02 | 0.15 ± 0.06 | 1.1 ± 0.2 | 0.6 ± 0.1 | 1.3 ± 0.2 | 2.0 ± 0.7 |
Furosemide | 0.12 ± 0.02 | 0.14 ± 0.02 | 1.2 ± 0.1 | 0.5 ± 0.1 | 1.3 ± 0.5 | 1.8 ± 0.2 |
Probenecid | 0.23 ± 0.03 | 0.13 ± 0.02 | 1.1 ± 0.1 | 0.6 ± 0.1 | 0.9 ± 0.1 | 1.6 ± 0.2 |
Colchicine | 0.25 ± 0.03 | 0.12 ± 0.05 | 1.0 ± 0.3 | 0.7 ± 0.2 | 0.8 ± 0.3 | 1.7 ± 0.4 |
Fructose 20 mmol/kg | 0.25 ± 0.02 | 0.21 ± 0.03 | 1.4 ± 0.2 | 0.5 ± 0.1 | 1.4 ± 0.1 | 2.5 ± 0.3 |
Fructose 50 mmol/kg | 2.0 ± 1.0 * | 0.7 ± 0.4 * | 4.1 ± 1.1 * | 1.7 ± 0.5 * | 5.4 ± 1.6 * | 14.4 ± 6.6 * |
Maleate | 0.13 ± 0.06 | 0.11 ± 0.03 | 1.1 ± 0.2 | 0.5 ± 0.1 | 0.9 ± 0.3 | 1.4 ± 0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vorobyeva, A.; Oroujeni, M.; Lindbo, S.; Hober, S.; Xu, T.; Liu, Y.; Rinne, S.S.; Garousi, J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules 2020, 25, 4448. https://doi.org/10.3390/molecules25194448
Vorobyeva A, Oroujeni M, Lindbo S, Hober S, Xu T, Liu Y, Rinne SS, Garousi J. Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules. 2020; 25(19):4448. https://doi.org/10.3390/molecules25194448
Chicago/Turabian StyleVorobyeva, Anzhelika, Maryam Oroujeni, Sarah Lindbo, Sophia Hober, Tianqi Xu, Yongsheng Liu, Sara S. Rinne, and Javad Garousi. 2020. "Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein" Molecules 25, no. 19: 4448. https://doi.org/10.3390/molecules25194448
APA StyleVorobyeva, A., Oroujeni, M., Lindbo, S., Hober, S., Xu, T., Liu, Y., Rinne, S. S., & Garousi, J. (2020). Investigation of a Pharmacological Approach for Reduction of Renal Uptake of Radiolabeled ADAPT Scaffold Protein. Molecules, 25(19), 4448. https://doi.org/10.3390/molecules25194448