The Effects of Flavonoids in Cardiovascular Diseases
Abstract
:1. Introduction
2. Classification of Flavonoids
2.1. Flavones
2.2. Flavonols
2.2.1. Quercetin
2.2.2. Kaempferol
2.3. Flavan-3-ols
2.3.1. Epicatechin
2.3.2. Epigallocatechin-3-gallate
2.4. Flavanones
2.4.1. Naringenin
2.4.2. Hesperetin
2.5. Anthocyanidins
2.6. Isoflavones
2.6.1. Diadzein
2.6.2. Genistein
3. The Flavonoid’s Mechanism of Action in Different Pathological States
3.1. Flavonoids and Their Antiplatelet Effect
3.2. Flavonoids and Their Antioxidant Effects
3.3. Flavonoids and Their Anti-Inflammatory Effects
3.4. Effects of Flavonoids in Hypertension
3.5. Flavonoids and Their Antiatherogenic Effects
3.6. Flavonoids and Ischemia
4. Flavonoid Bioavailability–Can It Be Enhanced?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maaliki, D.; Shaito, A.; Pintus, G.; El-Yazbi, A.F.; Eid, A. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019, 45, 57–65. [Google Scholar] [CrossRef]
- Ball, M. Cardiovascular disease. Food Nutr. 2020, 576–589. [Google Scholar] [CrossRef]
- Curry, S.J.; Krist, A.H.; Owens, U.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Kubik, M.; et al. Risk assessment for cardiovascular disease with nontraditional risk factors: Us preventive services task force recommendation statement. JAMA 2018, 320, 272–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Pandey, A. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahomoodally, M.F.; Gurib-Fakim, A.; Subratty, A.H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of mauritius. Pharm. Boil. 2005, 43, 237–242. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, A.; Pandey, A. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complement. Altern. Med. 2013, 13, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middleton, E. Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 1998, 439, 175–182. [Google Scholar] [CrossRef]
- Cook, N.C.; Samman, S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Rees, A.; Dodd, G.F.; Spencer, J.P. The effects of flavonoids on cardiovascular health: A review of human intervention trials and implications for cerebrovascular function. Nutrients 2018, 10, 1852. [Google Scholar] [CrossRef] [Green Version]
- Koes, R.; Verweij, W.; Quattrocchio, F.M. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005, 10, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.H.; Jiang, Y.; Shi, J.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.C.W.; Van De Putte, B.; Hollman, P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 2000, 48, 1746–1751. [Google Scholar] [CrossRef]
- Faggio, C.; Sureda, A.; Morabito, S.; Silva, A.S.; Mocan, A.; Nabavi, S.F.; Nabavi, S.M. Flavonoids and platelet aggregation: A brief review. Eur. J. Pharmacol. 2017, 807, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.C.; Costa, H.S.; Albuquerque, T.G.; Ramos, F.; Castilho, M.; Silva, A.S. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Erlund, I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004, 24, 851–874. [Google Scholar] [CrossRef]
- Chuankayan, P.; Rimlumduan, T.; Svasti, J.; Ketudat Cairns, J.R. Hydrolysis of soybean isoflavonoid glycosides by dalbergia β-glucosidases. J. Agric. Food Chem. 2007, 55, 2407–2412. [Google Scholar] [CrossRef]
- Mozzafarian, D.; Wu, J.H.Y. Flavonoids, dairy foods, and cardiovascular. Circ. Res. 2018, 122, 369–384. [Google Scholar] [CrossRef]
- Day, A.J.; Cañada, F.J.; Díaz, J.C.; Kroon, P.; Mclauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.; Williamson, G. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. Febs Lett. 2000, 468, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Simons, A.L.; Renouf, M.; Hendrich, S.; Murphy, P.A. Metabolism of glycitein (7,4’-Dihydroxy-6-methoxy-isoflavone) by human gut microflora. J. Agric. Food Chem. 2005, 53, 8519–8525. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Kulkarni, K.; Basu, S.; Zhang, S.; Hu, M. First-pass metabolism via UDP-Glucuronosyltransferase: A barrier to oral bioavailability of phenolics. J. Pharm. Sci. 2011, 100, 3655–3681. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, M.; Miguel, M.; Aleixandre, A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res. 2013, 68, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of fruits and vegetables with major cardiometabolic risk factors, markers of oxidation, and inflammation. Nutrients 2019, 11, 2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krga, I.; Milenkovic, D. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Pannu, N.; Bhatnagar, A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed. Pharmacol. 2019, 109, 2237–2251. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Nishiumi, S.; Miyamoto, S.; Kawabata, K.; Ohnishi, K.; Mukai, R.; Murakami, A.; Ashida, H.; Terao, J. Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front. Biosci. 2011, 3, 1332–1362. [Google Scholar] [CrossRef]
- Peluso, M.R. Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver. Exp. Boil. Med. 2006, 231, 1287–1299. [Google Scholar] [CrossRef]
- Clark, J.L.; Zahradka, P.; Taylor, C.G. Efficacy of flavonoids in the management of high blood pressure. Nutr. Rev. 2015, 73, 799–822. [Google Scholar] [CrossRef]
- Su, J.; Xu, H.-T.; Yu, J.-J.; Gao, J.-L.; Lei, J.; Yin, Q.-S.; Li, B.; Pang, M.-X.; Su, M.-X.; Mi, W.-J.; et al. Luteolin ameliorates hypertensive vascular remodeling through inhibiting the proliferation and migration of vascular smooth muscle cells. Evid. Based Complement. Altern. Med. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Homan, L.L.; Dillon, J.S. Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5′-monophosphate-dependent mechanism. Endocrinology 2004, 145, 5532–5539. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.J.; Symons, J.D.; Jalili, T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy and mechanisms12. Adv. Nutr. 2012, 3, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, L.; Morón, R.; Sanchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 2008, 16, 2081–2087. [Google Scholar] [CrossRef]
- Olaleye, M.; Crown, O.; Akinmoladun, A.; Akindahunsi, A.A.; Akinmoladun, A.C. Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats. Hum. Exp. Toxicol. 2013, 33, 602–608. [Google Scholar] [CrossRef]
- Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. BioFactors 2018, 44, 465–479. [Google Scholar] [CrossRef]
- Leeya, Y.; Mulvany, M.J.; Queiroz, E.F.; Marston, A.; Hostettmann, K.; Jansakul, C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur. J. Pharmacol. 2010, 649, 301–313. [Google Scholar] [CrossRef]
- Thamcharoen, N.; Susantitaphong, P.; Wongrakpanich, S.; Chongsathidkiet, P.; Tantrachoti, P.; Pitukweerakul, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Jaber, B.L.; Eiam-Ong, S. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: A meta-analysis. Hypertens. Res. 2015, 38, 847–855. [Google Scholar] [CrossRef]
- Igarashi, K.; Honma, K.; Yoshinari, O.; Nanjo, F.; Hara, Y. Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J. Nutr. Sci. Vitaminol. 2007, 53, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Ried, K.; Fakler, P.; Stocks, N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev. 2017, 4, 88–93. [Google Scholar] [CrossRef]
- Ellinger, S.; Reusch, A.; Stehle, P.; Helfrich, H.-P. Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a Bayesian approach. Am. J. Clin. Nutr. 2012, 95, 1365–1377. [Google Scholar] [CrossRef]
- Da Silva, N.D.; Fernandes, T.; Soci, U.P.R.; Monteiro, A.W.A.; Phillips, M.I.; Oliveira, E.M. Swimming training in rats increases cardiac microRNA-126 expression and angiogenesis. Med. Sci. Sports Exerc. 2012, 44, 1453–1462. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M.; Bautista, R.J.H.; Sandhu, M.A.; Hussein, O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxidative Med. Cell. Longev. 2019, 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, H.; Jawad, M.; Kamal, M.A.; Baldi, A.; Ulrih, N.P.; Nabavi, S.M.; Daglia, M. Evidence and prospective of plant derived flavonoids as antiplatelet agents: Strong candidates to be drugs of future. Food Chem. Toxicol. 2018, 119, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, M.; Sasaki, Y.; Giddings, J.C.; Yamamoto, J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother. Res. 2012, 26, 1272–1277. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.-Y.; Cheng, J.; Mao, L.; Wen, J.; Tan, X.-Q.; Liu, Z.-F.; Zeng, X.-R. Function of BKCa channels is reduced in human vascular smooth muscle cells from han chinese patients with hypertension. Hypertension 2012, 61, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.; Jokura, H.; Hashizume, K.; Ominami, H.; Shibuya, Y.; Suzuki, A.; Hase, T.; Shimotoyodome, A. Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct. 2013, 4, 1346. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, L.; Cui, L.; Hou, X.; Li, J.; Zhang, X.; Zhang, M. Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. Eur. J. Pharmacol. 2014, 735, 193–201. [Google Scholar] [CrossRef]
- McKay, D.L.; Chen, C.-Y.O.; Saltzman, E.; Blumberg, J.B. Hibiscus sabdariffa L. Tea (Tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J. Nutr. 2009, 140, 298–303. [Google Scholar] [CrossRef]
- Jiang, R.-W.; Lau, K.-M.; Lam, H.-M.; Yam, W.-S.; Leung, L.-K.; Choi, K.-L.; Waye, M.M.Y.; Mak, T.C.; Woo, K.-S.; Fung, K.-P. A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis. J. Ethnopharmacol. 2005, 96, 133–138. [Google Scholar] [CrossRef]
- Lu, X.-L.; Liu, J.-X.; Wu, Q.; Long, S.-M.; Zheng, M.-Y.; Yao, X.-L.; Ren, H.; Wang, Y.-G.; Su, W.-W.; Cheung, R.T.F.; et al. Protective effects of puerarin against Aß40-induced vascular dysfunction in zebrafish and human endothelial cells. Eur. J. Pharmacol. 2014, 732, 76–85. [Google Scholar] [CrossRef]
- Mita, M.; Tanaka, H.; Yanagihara, H.; Nakagawà, J.-I.; Hishinuma, S.; Sutherland, C.; Walsh, M.P.; Shoji, M. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation. J. Smooth Muscle Res. 2013, 49, 26–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; Prinzi, G.; Lamonaca, P.; Cardaci, V.; Fini, M. Flavonoids and reduction of cardiovascular disease (CVD) in chronic obstructive pulmonary disease (COPD). Curr. Med. Chem. 2019, 26, 7048–7058. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Ind. Crop. Prod. 2020, 152, 112536. [Google Scholar] [CrossRef]
- Mohammed, E.H.; Juan, A.R. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: A review. Blood Cells Mol. Dis. 2008, 41, 119–123. [Google Scholar]
- Ludwig, A.; Lorenz, M.; Grimbo, N.; Steinle, F.; Meiners, S.; Bartsch, C.; Stangl, K.; Baumann, G.; Stangl, V. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem. Biophys. Res. Commun. 2004, 316, 659–665. [Google Scholar] [CrossRef]
- Mladěnka, P.; Zatloukalova, L.; Filipský, T.; Hrdina, R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free. Radic. Boil. Med. 2010, 49, 963–975. [Google Scholar] [CrossRef]
- Muñoz, Y.; Garrido, A.; Valladares, L. Equol is more active than soy isoflavone itself to compete for binding to thromboxane A2 receptor in human platelets. Thromb. Res. 2009, 123, 740–744. [Google Scholar] [CrossRef]
- Wang, S.B.; Jang, J.Y.; Chae, Y.H.; Min, J.H.; Baek, J.Y.; Kim, M.; Park, Y.; Hwang, G.S.; Ryu, J.-S.; Chang, T.-S. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Free. Radic. Boil. Med. 2015, 83, 41–53. [Google Scholar] [CrossRef]
- Bunting, S.; Moncada, S.; Vane, J.R. The prostacyclin-thromboxane a2 balance: Pathophysiological and therapeutic implications. Br. Med. Bull. 1983, 39, 271–276. [Google Scholar] [CrossRef]
- Hamed, M.S.; Gambert, S.; Bliden, K.P.; Bailon, O.; Anand, S.; Antonino, M.J.; Hamed, F.; Tantry, U.; Gurbel, P.A. Dark chocolate effect on platelet activity, C-reactive protein and lipid profile: A pilot study. South. Med. J. 2008, 101, 1203–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickenig, G.; Harrison, D.G. The AT-1-type angiotensin receptor in oxidative stress. Circulation 2002, 105, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Chun, O.K.; Song, W.O. Plasma and dietary antioxidant status as cardiovascular disease risk factors: A review of human studies. Nutrients 2013, 5, 2969–3004. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Mishra, A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell. Mol. Boil. 2012, 58, 142–147. [Google Scholar]
- Sanchez, M.; Romero, M.; Gomez-Guzman, M.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Cardiovascular effects of flavonoids. Curr. Med. Chem. 2019, 26, 6991–7034. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aminuddin, A.; Yunus, M.H.M.; Murthy, J.K.; Hui, C.K.; Ugusman, A. Antioxidative and anti-inflammatory activities of Polygonum minus: A review of literature. Rev. Cardiovasc. Med. 2020, 21, 275–287. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, S.; Pandey, A. Scientific validation of the medicinal efficacy oftinospora cordifolia. Sci. World J. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.J.; Khodr, H.; Hider, C.R.; Rice-Evans, C.A. Structural dependence of flavonoid interactions with Cu2+ ions: Implications for their antioxidant properties. Biochem. J. 1998, 330, 1173–1178. [Google Scholar] [CrossRef]
- Kerry, N.L.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 1997, 135, 93–102. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Boil. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Arts, I.C.W.; Sesink, A.L.A.; Faassen-Peters, M.; Hollman, P.C.H. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br. J. Nutr. 2004, 91, 841–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010, 1, 15. [Google Scholar] [CrossRef]
- Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm. Allergy Drug Targets 2009, 8, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Ruparelia, N.; Chai, J.T.; Fisher, E.A.; Choudhury, R.P. Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat. Rev. Cardiol. 2016, 14, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Damon, M.; Flandre, O.; Michel, F.; Perdrix, L.; Labrid, C.; De Paulet, A.C. Effect of chronic treatment with a purified flavonoid fraction on inflammatory granuloma in the rat. Study of prostaglandin E2 and F2 alpha and thromboxane B2 release and histological changes. Arzneimittelforschung 1987, 37, 1149–1153. [Google Scholar] [PubMed]
- Lee, H.S.; Ko, H.R.; Ryu, S.Y.; Oh, W.K.; Kim, B.Y.; Mheen, T.I.; Ahn, J.S. Inhibition of phospholipase C Gamma 1 by the prenylated flavonoids from sophora flavescens. Planta Med. 1997, 63, 266–268. [Google Scholar] [CrossRef]
- Kimata, M.; Shichijo, M.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar] [CrossRef]
- Alarcón, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res. 2005, 49, 405–430. [Google Scholar] [CrossRef]
- Simões, D.M.; Malheiros, J.; Antunes, P.E.; Figueirinha, A.; Cotrim, M.D.; Fonseca, D.A. Vascular activity of infusion and fractions of Cymbopogon citratus (DC) Stapf. in human arteries. J. Ethnopharmacol. 2020, 258, 112947. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Song, J.; Wang, R.; Gao, L.; Zhang, L.; Fang, L.; Lu, Y.; Du, G. Total flavonoids from Anchusa italica Retz. Improve cardiac function and attenuate cardiac remodeling post mycardial infarction in mice. J. Ethnopharmacol. 2020, 257, 112887. [Google Scholar] [CrossRef]
- Barrientos, R.E.; Simirgiotis, M.J.; Palacios, J.; Paredes, A.; Borquez, J.; Bravo, A.; Cifuentes, F. Chemical fingerprinting, isolation an characterization of polyphenol compounds from heliotropium taltalense (phil.) i.m. johnst and its endothelium-dependent vascular relaxation effect in rat aorta. Molecules 2020, 25, 3105. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185–6205. [Google Scholar] [CrossRef]
- Moscatelli, V.; Hnatyszyn, O.; Acevedo, C.; Megías, J.; Alcaraz, M.; Ferraro, G. Flavonoids from Artemisia copa with anti-inflammatory activity. Planta Med. 2006, 72, 72–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petkov, E.; Nokolov, N.; Uzunov, P. Inhibitory effect of some flavonoids and falvonoid mixtures on cyclic AMP phosphodiesterase activity of rat heart. Planta Med. 1981, 43, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Saponara, R.; Bosisio, E. Inhibition of cAMP-phosphodiesterase by biflavones of ginkgobilobain rat adipose tissue. J. Nat. Prod. 1998, 61, 1386–1387. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, T.; Raj, J.U. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am. J. Respir. Cell Mol. Boil. 2016, 54, 451–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzserova, A.; Bernatova, I. Blood pressure regulation in stress: Focus on nitric oxide-dependent mechanisms. Physiol. Res. 2016, 65, S309–S342. [Google Scholar] [CrossRef] [PubMed]
- Calderone, V.; Chericoni, S.; Martinelli, C.; Testai, L.; Nardi, A.; Morelli, I.; Breschi, M.C.; Martinotti, E. Vasorelaxing effects of flavonoids: Investigation on the possible involvement of potassium channels. Naunyn Schmiedebergs Arch. Pharmacol. 2004, 370, 290–298. [Google Scholar] [CrossRef]
- Saponara, S.; Testai, L.; Iozzi, D.; Martinotti, E.; Martelli, A.; Chericoni, S.; Sgaragli, G.; Fusi, F.; Calderone, V. (+/−)-Naringenin as large conductance Ca2+-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br. J. Pharmacol. 2009, 149, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Schnorr, O.; Brossette, T.; Momma, T.Y.; Kleinbongard, P.; Keen, C.L.; Schroeter, H.; Sies, H. Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch. Biochem. Biophys. 2008, 476, 211–215. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, T.; Zhou, S.; Sun, L.; Zhang, L.; Yu, G. Mg2+-dependent modulation of BKCa channels by genistein in rat arteriolar smooth muscle cells. J. Cell. Physiol. 2014, 229, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Tamminen, M.; Mottino, G.; Qiao, J.H.; Breslow, J.L.; Frank, J.S. Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arter. Thromb. Vasc. Boil. 1999, 19, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Auger, C.; Gérain, P.; Laurent-Bichon, F.; Portet, K.; Bornet, A.; Caporiccio, B.; Cros, G.; Teissedre, P.-L.; Rouanet, J.-M. Phenolics from commercialized grape extracts prevent early atherosclerotic lesions in hamsters by mechanisms other than antioxidant effect. J. Agric. Food Chem. 2004, 52, 5297–5302. [Google Scholar] [CrossRef]
- Bouyahya, A.; El Omari, N.; Elmenyiy, N.; Guaouguaou, F.-E.; Balahbib, A.; El-Shazly, M.; Chamkhi, I. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Ajunga iva (L.) scherb. J. Ethnopharmacol. 2020, 258, 112875. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lim, S.C.; Lee, M.Y.; Lee, J.W.; Oh, W.K.; Kim, S.K.; Kang, K.W. Inhibition of neointimal formation by trans-resveratrol: Role of phosphatidyl inositol 3-kinase-dependent Nrf2 activation in heme oxygenase-1 induction. Mol. Nutr. Food Res. 2010, 54, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Juan, D.; Perez-Vizcaino, F.; Jimenez, J.; Tamargo, J.; Zarzuelo, A. Flavonoids and cardiovascular diseases. Stud. Nat. Prod. Chem. 2001, 25, 565–605. [Google Scholar] [CrossRef]
- Caton, P.W.; Pothecary, M.R.; Lees, D.M.; Khan, N.Q.; Wood, E.G.; Shoji, T.; Kanda, T.; Rull, G.; Corder, R. Regulation of vascular endothelial function by procyanidin-rich foods and beverages. J. Agric. Food Chem. 2010, 58, 4008–4013. [Google Scholar] [CrossRef]
- Fernandes, I.; Pérez-Gregorio, M.; Soares, S.; Mateus, N.; De Freitas, V. wine flavonoids in health and disease prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef]
- De Gaetano, G.; De Curtis, A.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; Rotondo, S. Antithrombotic effect of polyphenols in experimental models: A mechanism of reduced vascular risk by moderate wine consumption. Ann. N. Y. Acad. Sci. 2002, 957, 174–188. [Google Scholar] [CrossRef]
- Murphy, K.J.; Chronopoulos, A.K.; Singh, I.; Francis, M.A.; Moriarty, H.; Pike, M.J.; Turner, A.H.; Mann, N.J.; Sinclair, A.J. Dietary flavonols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 2003, 77, 1466–1473. [Google Scholar] [CrossRef] [Green Version]
- Schewe, T.; Sadik, C.; Klotz, L.-O.; Yoshimoto, T.; Kuhn, H.; Sies, H. Polyphenols of cocoa: Inhibition of mammalian 15-Lipoxygenase. Boil. Chem. 2001, 382, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Gross, M. Flavonoids and cardiovascular disease. Pharm. Biol. 2004, 42, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.R. Alcohol, heart disease, and mortality: A review. Rev. Cardiovasc. Med. 2002, 3, 7–13. [Google Scholar] [PubMed]
- Tavani, A.; Spertini, L.; Bosetti, C.; Parpinel, M.; Gnagnarella, P.; Bravi, F.; Peterson, J.; Dwyer, J.T.; Lagiou, P.; Negri, E.; et al. Intake of specific flavonoids and risk of acute myocardial infarction in Italy. Public Health Nutr. 2006, 9, 369–374. [Google Scholar] [CrossRef]
- Cassidy, A.; Mukamal, K.J.; Liu, L.; Franz, M.; Eliassen, A.H.; Rimm, E.B. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 2013, 127, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Lin, B. Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev. Med. Chem. 2011, 11, 1222–1238. [Google Scholar]
- Gottlieb, M.; Leal-Campanario, R.; Campos-Esparza, M.R.; Sánchez-Gómez, M.V.; Alberdi, E.; Arranz, A.; Delgado-García, J.M.; Gruart, A.; Matute, C. Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol. Dis. 2006, 23, 374–386. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [Green Version]
- Thilakarathna, S.H.; Rupasinghe, H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013, 5, 3367–3387. [Google Scholar] [CrossRef]
- Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370. [Google Scholar] [CrossRef] [Green Version]
- Pei, R.; Liu, X.; Bolling, B.W. Flavonoids and gut health. Curr. Opin. Biotechnol. 2020, 61, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Li, X.; Li, W.; Zhao, X. Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS PharmSciTech 2011, 12, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Arriagada, F.; Günther, G.; Morales, J. Nanoantioxidant–based silica particles as flavonoid carrier for drug delivery applications. Pharmaceutics 2020, 12, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, L.; Ao, X.; Guo, Y. Study on the synthesis of dual-chain ionic liquids and their application in the extraction of flavonoids. J. Chromatogr. A 2020, 461446. [Google Scholar] [CrossRef]
Plant | Flavonoids | Action on the Cardiovascular System | Targeted Conditions |
---|---|---|---|
Polygonum minus (Persicaria minor) | Myricetin, quercetin, methyl-flavonol | Antioxidant, anti-inflammatory | Atherosclerosis, hypertension, ischemic heart disease |
Lentil (Lens culinaris Medik.) | Quercetin, kaempferol | Anticoagulant, anti-platelet | Cardiovascular diseases associated with hyperactivation of platelets |
Ajuga Iva (L.) | Naringein, apigenin-7-O-neohesperidoside | Antioxidant, anti-inflammatory anti-hypercholesterolemia | Atherosclerosis |
Cymbopogon citratus (DC) Sapf. | Tannins, luteolin, apigenin | Vasorelaxation, antioxidant, anti-inflammatory | Hypertension |
Anchusa italica Retz. | Rutin, hesperidin, quercetin, kaempferol, naringenin | Anti-inflammatory, antioxidant, anticoagulant | Ischemic heart disease, myocardial infarction |
Heliotropium taltalense (Phil.) | Naringenin, pinocembrin, quercetin | Anti-inflammatory, antioxidant, vasorelaxation | Hypertension |
Equisetum Arvense L. (Horsetail) | Resveratrol, apigenin, quercetin | Antioxidant, anti-inflammatory, | Hypertension, ischemic cardiac disease |
Trichosanthes kirilowii | Luteolin | Hypolipidemic, antioxidant, anti-atherosclerotic | Ischemic cardiac disease, hyperlipidemia, hypertension |
Thai Perilla frutescens | Cyanidins, luteolin, phenolic acids | Anti-inflammatory, antioxidant | Ischemic heart disease, hypertension |
Abelmoschus esculentus | Quercetin | Anti-inflammatory, antioxidant, hypolipidemic, | Atherosclerosis, stroke, hypertension |
Dracocephalum moldavica L. | Tallianine, luteolin, apigenin, diosmetin | Antioxidant | Ischemic heart disease |
Moringa oleifera Lam. | Catechin, epicatechin, kaempferol, quercetin | Antioxidant, anti-inflammatory | Hypertension, ischemic cardiac disease |
Ephedra herb | Epiafzelechin (flavanol), quercetin, gallocatechin, apigenin, luteolin | Diuretic, anti-inflammatory, hypotensive, antioxidant | Hypertension |
Corchorus olitorius Leaf and Corchorus capsularis | Luteolin | Antioxidant, hypotensive, diuretic | Hypertension, ischemic cardiac disease |
Food | Bioactive Compounds | Beneficial Effects on Preventing Cardiovascular Diseases | Primary Effects |
---|---|---|---|
Tomatoes | Phenols: phenolic acid, flavonoids, carotenoids | Improve metabolic profile (lipid, carbohydrate metabolism), increase bioavailability of nitric oxide and vascular pressure | Antioxidant, anti-inflammatory, antiplatelet, anti-atherosclerosis, anti-hypertensive, antiapoptotic |
Garlic | Allicin | Lowers LDL-cholesterol levels, blood pressure, inflammatory response, oxidative stress | Antioxidant, anti-inflammatory, anti-carcinogenic, antibacterial, antiviral, antifungal, antimicrobial |
Edible wild fruits | Polyphenols: procyanidin, quercetin, phenolic acid, anthocyanin, carotenoids | Lower LDL-C levels, blood pressure, body mass index, glycosylated hemoglobin and hemoglobin levels, decrease inflammatory response and oxidative stress, improve endothelial function | Antioxidant, Anti-inflammatory, anti-obesity, anti-diabetic |
Apples | Lutein, carotenoids, Antioxidant: phlorizin, quercetin, catechin, procyanidin, epicatechin | Improve lipid profile, lower blood pressure, pro-inflammatory cytokines, lipid oxidation, oxidative stress, blood glucose, increase nitric oxide | Antioxidant, antifungal, antioxidant, antifungal, anti-proliferative |
Broccoli | Lutein, zeaxanthin, B-carotene, flavonoids | Improves lipid and carbohydrate profile, reduces pro-inflammatory cytokines and markers of oxidative stress | Antioxidant, anti-inflammatory, anti-carcinogenic |
Cocoa | Phytochemicals: methylxanthine, proantho-cyanidin, theobromine | Improves insulin sensitivity, lipid profile, reduces blood pressure, inflammatory response and oxidative stress, improves endothelial function | Antioxidant, anti-inflammatory, hypoglycemic, antiplatelet, anti-hypertensive |
Grapes | Polyphenols: resveratrol, carotenoids, flavonoids | Improve lipid profile and carbohydrate metabolism, reduce pro-inflammatory cytokines and oxidative stress, increase nitric oxide | Antioxidant, anti-inflammatory, antihypertensive, anti-diabetic |
Olives | Phenolic compounds, hydroxy-tyrosol, oleuropein, polyphenols, flavonoids, theanine, quercetin | Improve lipid profile, lower blood pressure, body mass index, inflammatory response and oxidative stress | Antioxidant, anti-inflammatory, anti-hypertensive, anti-obesity |
Beneficial Effect | Specific Mechanisms |
---|---|
Antiplatelet | Blocking excessive platelet activation, decrease platelet adhesion [57,59,60] |
Antioxidant | Formation of stable flavonoid radicals, elimination of reactive oxygen species, increasing the protection of antioxidant systems [64,65,67,68] |
Anti-inflammatory | Inhibition of prostaglandin synthesis, inhibition of nitric oxide synthase, inhibition of phosphodiesterases [75,76,77,78,82] |
Antiatherogenic | Reduce the oxidation of low-density lipoproteins, lower plasma lipid levels [95,96,97,98,99,100,101] |
Anti-hypertensive | Modulate the renin-angiotensin-aldosterone system, increase the concentration of endothelial nitric oxide [32,33,34,88,89,90] |
Anti-ischemic | Reduce cell suffering caused by myocardial or brain ischemia, increase the concentration of endothelial nitric oxide [102,103,104,105,106,107] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I.; et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020, 25, 4320. https://doi.org/10.3390/molecules25184320
Ciumărnean L, Milaciu MV, Runcan O, Vesa ȘC, Răchișan AL, Negrean V, Perné M-G, Donca VI, Alexescu T-G, Para I, et al. The Effects of Flavonoids in Cardiovascular Diseases. Molecules. 2020; 25(18):4320. https://doi.org/10.3390/molecules25184320
Chicago/Turabian StyleCiumărnean, Lorena, Mircea Vasile Milaciu, Octavia Runcan, Ștefan Cristian Vesa, Andreea Liana Răchișan, Vasile Negrean, Mirela-Georgiana Perné, Valer Ioan Donca, Teodora-Gabriela Alexescu, Ioana Para, and et al. 2020. "The Effects of Flavonoids in Cardiovascular Diseases" Molecules 25, no. 18: 4320. https://doi.org/10.3390/molecules25184320
APA StyleCiumărnean, L., Milaciu, M. V., Runcan, O., Vesa, Ș. C., Răchișan, A. L., Negrean, V., Perné, M.-G., Donca, V. I., Alexescu, T.-G., Para, I., & Dogaru, G. (2020). The Effects of Flavonoids in Cardiovascular Diseases. Molecules, 25(18), 4320. https://doi.org/10.3390/molecules25184320