Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp.
Abstract
:1. Introduction
2. Results
2.1. Analysis of Nectar Volume and Free Sugar Content
2.2. Correlation between Nectar Characteristics and Meteorological Factors
2.3. Analysis of Amino Acid Content
2.4. Floral Nectar VOCs Composition
3. Discussion
4. Materials and Methods
4.1. Plants Materials
4.2. Collection of Floral Nectar and Investigation of Nectar Volumes
4.3. Analysis of Free Sugar Contents
4.4. Analysis of Amino acid Contents
4.5. Headspace Solid-Phase Microextraction (HS-SPME) Sampling
4.6. Volatile Organic Compounds (VOCs) Identification
Author Contributions
Funding
Conflicts of Interest
References
- Strauss, S.Y.; Murch, P. Towards an understanding of the mechanisms of tolerance: Compensating for herbivore damage by enhancing a mutualism. Ecol. Entomol. 2004, 29, 234–239. [Google Scholar] [CrossRef]
- Raguso, R.A. Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. Curr. Opin. Plant Biol. 2004, 7, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.Y.; Whittall, J.B. Non-pollinator agents of selection on floral traits. In The Ecology and Evolution of Flowers; Harder, L.D., Barrett, S.C.H., Eds.; Oxford University Press: Davis, CA, USA, 2006; pp. 120–138. [Google Scholar]
- Juillet, N.; Scopece, G. Does floral trait variability enhance reproductive success in deceptive orchids? Perspect. Plant Ecol. 2010, 12, 317–322. [Google Scholar] [CrossRef]
- Nicolson, S.W. Bee food: The chemistry and nutritional value of nectar, pollen and mixtures of the two. Afr. Zool. 2011, 46, 197–204. [Google Scholar] [CrossRef]
- Vaudo, A.D.; Tooker, J.F.; Grozinger, C.M.; Patch, H.M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 2015, 10, 133–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, M. Nectar: Generation, regulation and ecological functions. Trends Plant Sci. 2011, 16, 191–200. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M.; Vesprini, J. Nectar biodiversity: A short review. Plant Syst. Evol. 2003, 238, 7–21. [Google Scholar] [CrossRef]
- Lee, U.; Kim, M.J.; Lee, M.H.; Hwang, M.S.; Hwang, S.I. Consideration of the quantitative nut characteristics in chestnut hybrids. J. Korean Soc. For. Sci. 2005, 94, 34–38. [Google Scholar]
- Shi, Z.; Stösser, R. Reproductive biology of Chinese chestnut (Castanea mollissima Blume). Eur. J. Hortic. Sci. 2005, 70, 96–103. [Google Scholar]
- Farkas, Á.; Zajácz, E. Nectar production for the Hungarian honey industry. Eur. J. Plant Sci. Biotechnol. 2007, 1, 125–151. [Google Scholar]
- Turski, M.P.; Chwil, S.; Turska, M.; Chwil, M.; Kocki, T.; Rajtar, G.; Parada-Turska, J. An exceptionally high content of kynurenic acid in chestnut honey and flowers of chestnut tree. J. Food Compos. Anal. 2016, 48, 67–72. [Google Scholar] [CrossRef]
- Soria, A.C.; Sanz, J.; Martínez-Castro, I. SPME followed by GC–MS: A powerful technique for qualitative analysis of honey volatiles. Eur. Food Res. Technol. 2009, 228, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.; Harizanis, P.C.; Polissiou, M. Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds. LWT Food Sci. Technol. 2011, 44, 1042–1051. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 2000, 122, 627–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, G.A.; Schiestl, F.P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 2009, 23, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Shibamoto, T. Volatile constituents of the chestnut flower. J. Agric. Food Chem. 1980, 28, 82–84. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, E.R.; Kim, K.S. Volatile Components of Chestnut (Castanea crenata Sieb. et Zucc.) Flower. J. Korean Soc. Food Sci. Nutr. 2003, 32, 801–805. [Google Scholar]
- Kantsa, A.; Raguso, R.A.; Lekkas, T.; Kalantzi, O.I.; Petanidou, T. Floral volatiles and visitors: A meta-network of associations in a natural community. Ecology 2019, 107, 2574–2586. [Google Scholar] [CrossRef]
- Baker, H.G.; Baker, I. Floral nectar sugar constituents in relation to pollinator type. In Handbook of Experimental Pollination Biology; Jones, C.E., Little, R.J., Eds.; Van Nostrand Reinhold Company: New York, NY, USA, 1983; pp. 117–141. [Google Scholar]
- Cnaani, J.; Thomson, J.D.; Papaj, D.R. Flower choice and learning in foraging bumblebees: Effects of variation in nectar volume and concentration. Ethology 2006, 112, 278–285. [Google Scholar] [CrossRef]
- Gonza´lez-Teuber, M.; Heil, M. Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal. Behav. 2009, 4, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Seely, T.D. Social foraging by honeybees; how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 1986, 19, 343–354. [Google Scholar] [CrossRef]
- Burquez, A.; Corbet, S.A. Dynamics of production and exploitation of nectar: Lessons from Impatiens glandulifera Royle. In Nectary Biology; Bahadur, B., Ed.; Dattsons: London, UK, 1998; pp. 130–152. [Google Scholar]
- Gonzalez-Porto, A.V.; Arroyo, T.M.; Esteban, C.B. How soil type (gypsum or limestone) influences the properties and composition of thyme honey. SpringerPlus 2016, 5, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, A.; Kang, D.; Kwon, H.W.; Park, Y.K.; Kim, M.S. Analysis of floral nectar characteristics of Korean and Chinses hawthorns (Crataegus pinnatifida Bunge). J. Apic. Res. 2017, 57, 119–128. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, A.; Kwon, H.W.; Lee, W.; Kim, M.S. Analysis of flowering and nectar characteristics of major four chestnut cultivars (Castanea spp.). J. Apic. 2017, 32, 237–246. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.H.; Song, J.H.; Kim, H. Honey bee visiting and secreted nectar characteristics of Tilia insularis Nakai and relation with meteorological traits. J. Apic. 2012, 28, 331–337. [Google Scholar]
- Kim, M.S.; Kim, S.H.; Song, J.H.; Kim, H. Analysis of secreted nectar volume, sugar and amino acid content in male and female flower of Evodia daniellii Hemsley. J. Korean For. Soc. 2014, 103, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Takkis, K.; Tscheulin, T.; Petanidou, T. Differential effects of climate warming on the nectar secretion of early- and late-flowering Mediterranean Plants. Front. Plant Sci. 2018, 9, 874. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, H.B.; Kristjansson, K. Influence of temperature and floret age on nectar secretion in Trifolium repens L. Ann. Bot. 1994, 74, 327–334. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M. Nectar production and presentation. In Nectaries and Nectar; Nicolson, S.W., Nepi, M., Pacini, E., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 167–214. [Google Scholar]
- Hendriksma, H.P.; Oxman, K.L.; Shafir, S. Amino acid and carbohydrate tradeoffs by honey bee nectar foragers and their implications for plant-pollinator interactions. J. Insect Physiol. 2014, 69, 56–64. [Google Scholar] [CrossRef]
- Carter, C.; Sharoni, S.; Yehonatan, L.; Palmer, R.G.; Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenchaften 2006, 93, 72–79. [Google Scholar] [CrossRef]
- Petanidou, T.; Van Laere, A.J.; Ellis, W.N.; Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 2006, 115, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.K.; Kim, S.H.; Song, J.H.; Nam, J.I.; Song, J.M.; Kim, M.S. Analysis of secreted nectar volume, sugar and amino acid content in Prunus yedoensis Matsum. and Prunus sargentii Rehder. J. Apic. 2019, 34, 225–232. [Google Scholar] [CrossRef]
- Kiers, E.T.; Denison, R.F. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Theis, N.; Adler, L.S. Advertising to the enemy: Enhanced floral fragrance increases beetle attraction and reduces plant reproduction. Ecology 2012, 93, 430–435. [Google Scholar] [CrossRef]
- Knauer, A.C.; Schiestl, F.P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 2015, 18, 135–143. [Google Scholar] [CrossRef]
- Hansen, D.M.; Olesen, J.M.; Mione, T.; Johnson, S.D.; Müller, C.B. Coloured nectar: Distribution, ecology, and evolution of an enigmatic floral trait. Biol. Rev. 2007, 82, 83–111. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.D.; Alarcón, R. Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim. Behav. 2007, 74, 199–205. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, Y.; Zhang, Y.; Liu, F.; Chen, H.; Liu, J.; Handberg, E.S.; Chagovets, V.V.; Chingin, K. Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 4103–4112. [Google Scholar] [CrossRef]
- Wright, G.A.; Lutmerding, A.; Dudareva, N.; Smith, B.H. Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J. Comp. Physiol. A 2005, 191, 105–114. [Google Scholar] [CrossRef]
- Klatt, B.K.; Burmeister, C.; Westphal, C.; Tscharntke, T.; von Fragstein, M. Flower volatiles, crop varieties and bee responses. PLoS ONE 2013, 8, e72724. [Google Scholar] [CrossRef]
- Theis, N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 2006, 32, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Andrews, E.S.; Theis, N.; Adler, L.S. Pollinator and herbivore attraction to Cucurbita floral volatiles. J. Chem. Ecol. 2007, 33, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Yang, Z.; Baldermann, S.; Kajitani, Y.; Ota, S.; Kasuga, H.; Imazeki, Y.; Ohnishi, T.; Watanabe, N. Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. J. Plant Physiol. 2012, 169, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, H.E.; Bergström, G. The ecology and evolution of pollen odors. Plant. Sysy. Evol. 2000, 222, 63–87. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Ruther, J.; Kleier, S. Plant–plant signaling: Ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J. Chem. Ecol. 2005, 31, 2217–2222. [Google Scholar] [CrossRef] [PubMed]
- Aljbory, Z.; Chen, M.S. Indirect plant defense against insect herbivores: A review. Insect Sci. 2018, 25, 2–23. [Google Scholar] [CrossRef]
- Pham-Delegue, M.H.; Etievant, P.; Guichard, E.; Masson, C. Sunflower volatiles involved in honeybee discrimination among genotypes and flowering stages. J. Chem. Ecol. 1989, 15, 329–343. [Google Scholar] [CrossRef]
- Wright, G.A.; Skinner, B.D.; Smith, B.H. Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J. Chem. Ecol. 2002, 28, 721–740. [Google Scholar] [CrossRef]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Löfstedt, C.; Hansson, B.; Ibarra, F.; Francke, W. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success? Evolution 2000, 54, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Soto, V.C.; Maldonado, I.B.; Jofré, V.P.; Galmarini, C.R.; Silva, M.F. Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC–MS: Relationship with pollination and seed production. Microchem. J. 2015, 122, 110–118. [Google Scholar] [CrossRef]
Characteristics | CCK | CCJ | CDA | CMC | CSE | H Test * |
---|---|---|---|---|---|---|
Flowering date | June 19–21 | June 19–21 | June 19–21 | June 25–27 | June 27–29 | |
NVC (μL/catkin) | 20.9 ± 7.6 b | 42.7 ± 10.8 a | 8.7 ± 2.4 c | 11.0 ± 3.0 b | 10.7 ± 3.4 b | p = 0.000 |
NC (Brix) | 22.8 ± 8.0 c | 34.2 ± 12.5 bc | 40.3 ± 6.2 b | 61.8 ± 5.9 a | 43.8 ± 14.6 bc | p = 0.000 |
FSC (μg/μL) | 22.6 ± 9.4 c | 40.1 ± 14.8 bc | 52.3 ± 14.6 b | 82.5 ± 16.8 a | 56.9 ± 15.2 bc | p = 0.000 |
Sucrose (%) | 3.7 ± 1.2 c | 7.9 ± 4.7 b | 13.4 ± 1.5 a | 15.9 ± 4.9 a | 3.2 ± 0.9 c | p = 0.000 |
Glucose (%) | 21.5 ± 1.4 bc | 20.5 ± 1.3 c | 33.7 ± 0.5 a | 22.6 ± 0.5 b | 32.7 ± 1.0 a | p = 0.000 |
Fructose (%) | 74.8 ± 1.9 a | 71.7 ± 3.5 b | 52.9 ± 1.3 d | 61.5 ± 5.4 c | 64.1 ± 1.7 c | p = 0.000 |
S/H ratio | 0.04 ± 0.02 c | 0.13 ± 0.10 b | 0.15 ± 0.01 a | 0.17 ± 0.06 a | 0.02 ± 0.00 c | p = 0.000 |
SCPC 1 (mg/catkin) | 0.45 ± 0.2 b | 1.35 ± 0.5 a | 0.43 ± 0.1 b | 0.93 ± 0.4 a | 0.31 ± 0.1 b | p = 0.000 |
Characteristics | NVC | NC | FSC | SCPC |
---|---|---|---|---|
Temperature | ns | 0.772 ** | 0.716 ** | ns |
Relative humidity | ns | −0.729 ** | −0.729 ** | ns |
NVC | −0.631 * | −0.681 ** | 0.556 * | |
NC | 0.907 ** | ns | ||
FSC | ns |
Amino Acid (%) | CCK | CCJ | CDA | CMC | CSE | H Test * |
---|---|---|---|---|---|---|
Alanine | 5.2 ± 1.1 | 3.8 ± 0.2 | 3.3 ± 0.5 | 6.2 ± 1.5 | 3.7 ± 1.4 | |
Arginine 1 | 0.6 ± 0.3 | 2.1 ± 0.6 | 1.3 ± 0.6 | 0.9 ± 0.2 | 1.1 ± 0.2 | |
Asparagine | 15.5 ± 3.4 b | 12.9 ± 3.2 b | 15.1 ± 6.5 b | 32.4 ± 3.5 ab | 41.0 ± 0.6 a | p = 0.048 |
Aspartic acid | 8.9 ± 0.9 | 9.4 ± 2.4 | 6.0 ± 0.1 | 6.8 ± 0.9 | 6.4 ± 2.8 | |
GABA 2 | 3.8 ± 0.6 ab | 6.0 ± 0.8 a | 4.6 ± 0.9 ab | 3.5 ± 0.7 ab | 2.2 ± 0.7 b | p = 0.047 |
Glutamic acid | 13.2 ± 2.6 | 13.9 ± 3.6 | 10.9 ± 0.8 | 11.0 ± 1.8 | 7.8 ± 0.9 | |
Glutamine | 4.2 ± 0.4 b | 6.0 ± 0.9 ab | 13.2 ± 2.0 a | 4.6 ± 0.5 b | 4.5 ± 0.7 ab | p = 0.037 |
Glycine | 1.0 ± 0.3 | 1.0 ± 0.3 | 1.1 ± 0.4 | 1.1 ± 0.2 | 0.8 ± 0.1 | |
Histidine 1 | 1.0 ± 0.1 | 1.4 ± 0.3 | 1.3 ± 0.2 | 0.9 ± 0.2 | 0.9 ± 0.2 | |
Isoleucine 1 | 1.3 ± 0.2 | 1.4 ± 0.7 | 1.3 ± 0.3 | 1.1 ± 0.0 | 0.6 ± 0.3 | |
Leucine 1 | 1.1 ± 0.2 | 1.1 ± 0.4 | 1.3 ± 0.4 | 0.8 ± 0.1 | 0.5 ± 0.3 | |
Lysine 1 | 0.7 ± 0.0 | 0.9 ± 0.3 | 0.9 ± 0.0 | 0.4 ± 0.0 | 0.5 ± 0.0 | |
Methionine 1 | - | 0.2 ± 0.1 | 0.4 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.0 | |
Phenylalanine 1 | 0.6 ± 0.2 | 1.1 ± 0.4 | 0.6 ± 0.2 | 1.2 ± 0.4 | 0.7 ± 0.5 | |
Proline | 29.6 ± 4.9 a | 22.3 ± 8.4 abc | 26.8 ± 4.3 ab | 7.3 ± 1.2 c | 18.0 ± 8.4 bc | p = 0.049 |
Serine | 5.1 ± 1.1 | 3.8 ± 0.4 | 4.7 ± 1.3 | 7.3 ± 0.2 | 5.7 ± 0.2 | |
Threonine 1 | 1.2 ± 0.3 | 1.9 ± 0.3 | 1.3 ± 0.7 | 1.5 ± 0.0 | 1.2 ± 0.2 | |
Tryptophan 1 | 5.5 ± 1.4 ab | 7.9 ± 2.4 ab | 3.4 ± 0.8 b | 10.6 ± 1.9 a | 2.9 ± 3.0 ab | p = 0.042 |
Tyrosine | 0.4 ± 0.0 | 0.9 ± 0.6 | 0.7 ± 0.3 | 0.3 ± 0.0 | 0.3 ± 0.1 | |
Valine 1 | 2.1 ± 0.3 | 2.0 ± 0.6 | 2.4 ± 0.4 | 2.2 ± 0.3 | 1.5 ± 0.5 | |
Total content (mg/L) | 53.9 ± 12.6 | 76.2 ± 44.7 | 81.5 ± 31.9 | 118.1 ± 27.6 | 60.1 ± 9.6 |
VOCs | LRI | CCK | CCJ | CDA | CMC | CSE | H Test * |
---|---|---|---|---|---|---|---|
Styrene | 887 | - | 0.58 ± 0.10 | - | 2.43 ± 1.82 | - | |
Benzaldehyde | 960 | 2.24 ± 1.09 | 7.23 ± 3.58 | 38.92 ± 16.12 | 8.36 ± 0.66 | 40.81 ± 2.09 | |
Benzyl alcohol | 1036 | 11.38 ± 0.98 a | 7.33 ± 0.36 ab | 4.74 ± 1.74 abc | 1.03 ± 0.09 c | 2.88 ± 0.49 bc | p = 0.016 |
Benzeneacetaldehyde | 1044 | - | - | - | 21.09 ± 3.15 | 2.07 ± 0.19 | |
Phenylethyl Alcohol | 1062 | 18.54 ± 1.21 | 11.37 ± 0.87 | - | 0.65 ± 0.15 | 5.16 ± 0.51 | |
α-Methylbenzenemethanol, | 1063 | 14.03 ± 0.71 a | 11.61 ± 0.58 b | 5.39 ± 1.20 bc | 7.76 ± 0.45 bc | 2.89 ± 0.40 c | p = 0.011 |
Ethyl benzoate | 1172 | 1.11 ± 0.13 | - | - | - | - | |
Benzoic acid, ethyl ester | 1172 | - | - | 1.63 ± 0.16 | - | - | |
(E)-Cinnamaldehyde | 1273 | 1.65 ± 0.47 | - | - | - | - | |
2’-Aminoacetophenone | 1304 | 0.84 ± 0.07 | - | - | - | - | |
Acetophenone | 1304 | 39.72 ± 2.72 a | 54.40 ± 1.85 a | 37.77 ± 10.45 a | 50.57 ± 3.35 a | 7.17 ± 0.53 b | |
Eugenol | 1361 | - | - | 1.76 ± 0.36 | - | - | |
Hexanal | 796 | - | - | - | 1.56 ± 0.62 | - | |
(Z)-3-Hexen-1-ol | 856 | 7.50 ± 1.60 ab | 7.86 ± 0.92 ab | 3.00 ± 0.45 bc | 1.99 ± 0.15 c | 14.71 ± 1.35 a | p = 0.014 |
(E)-2-Hexen-1-ol | 869 | - | - | - | - | 3.46 ± 0.16 | |
1-Hexanol | 871 | - | 1.20 ± 0.18 | - | 1.30 ± 0.11 | - | |
Ethyl hexanoate | 1001 | - | - | - | - | 7.00 ± 3.34 | |
2-Ethyl-1-hexanol | 1031 | 1.87 ± 0.21 b | 1.81 ± 0.04 b | 4.82 ± 0.80 ab | 2.06 ± 0.25 ab | 5.70 ± 0.44 a | p = 0.034 |
1-Octanol | 1073 | - | - | - | - | 3.51 ± 0.18 | |
Nonanal | 1104 | 0.67 ± 0.00 | - | 1.80 ± 0.40 | 2.09 ± 1.03 | 2.46 ± 0.51 | |
1-nonanol | 1173 | - | - | - | - | 4.52 ± 1.06 | |
(Z)-Geraniol | 1230 | 0.44 ± 0.02 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.K.; Lee, S.; Song, J.H.; Kim, M.J.; Yunusbaev, U.; Lee, M.-L.; Kim, M.S.; Kwon, H.W. Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp. Molecules 2020, 25, 4225. https://doi.org/10.3390/molecules25184225
Kim YK, Lee S, Song JH, Kim MJ, Yunusbaev U, Lee M-L, Kim MS, Kwon HW. Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp. Molecules. 2020; 25(18):4225. https://doi.org/10.3390/molecules25184225
Chicago/Turabian StyleKim, Young Ki, Sujin Lee, Jeong Ho Song, Mahn Jo Kim, Ural Yunusbaev, Myeong-Lyeol Lee, Mun Seop Kim, and Hyung Wook Kwon. 2020. "Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp." Molecules 25, no. 18: 4225. https://doi.org/10.3390/molecules25184225
APA StyleKim, Y. K., Lee, S., Song, J. H., Kim, M. J., Yunusbaev, U., Lee, M.-L., Kim, M. S., & Kwon, H. W. (2020). Comparison of Biochemical Constituents and Contents in Floral Nectar of Castanea spp. Molecules, 25(18), 4225. https://doi.org/10.3390/molecules25184225