Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.2. Grape and Yeast Analysis
2.3. Evolution of the Content of Major Elements
2.4. Evolution of the Content of Minor Elements
2.5. Evolution of the Content of Rare Earth Elements
2.6. Influence of the Yeast Addition
2.7. Influence of the Vineyard
3. Discussion
3.1. Behavior of the Elements as a Function of the Fraction
3.2. Studies about the Origin of the Metals
4. Materials and Methods
4.1. Winemaking Process
4.2. Reagents, Samples and Sample Preparation
4.3. Analysis of the Digests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greenough, J.D.; Mallory-Greenough, L.M.; Fryer, B.J. Geology and wine: Regional trace element fingerprinting of Canadian wines. Geosci. Can. 2005, 32, 129–137. [Google Scholar]
- Tariba, B. Metals in Wine—Impact on Wine Quality and Health Outcomes. Biol. Trace El. Res. 2011, 144, 143–156. [Google Scholar] [CrossRef]
- Pohl, P. What do metals tell us about wine? Trends Anal. Chem. 2007, 26, 941–949. [Google Scholar] [CrossRef]
- Esparza, I.; Salinas, I.; Santamaria, C. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Anal. Chim. Acta. 2005, 543, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Kment, P.; Mihaljevič, M.; Ettler, V. Differentiation of Czech wines using multielement composition-a comparison with vineyard soil. Food Chem. 2005, 91, 157–165. [Google Scholar] [CrossRef]
- McKinnon, A.J.; Catrall, R.W.; Scollary, C.R. Aluminum in wine—Its measurement and identification of major sources. Am. J. Enol. Vit. 1992, 43, 166–170. [Google Scholar]
- Galani-Nikolakaki, S.; Kallithrakas-Kontos, N.; Katsanos, A.A. Trace element analysis of Cretan wines and wine products. Sci. Total Environ. 2002, 285, 155–163. [Google Scholar] [CrossRef]
- OIV (2011) Compendium of international methods of wine and must analysis, OIV-MAC1- 01, maximum acceptable limits of various substances contained in wine. Paris, France: International Organization of Vine and Wine. Available online: http://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 25 June 2020).
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Man. 2008, 28, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, L.; Cadena, E.; Martinez-Blanco, J.; Gassol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Faure, D.; Deschamps, A.M. Physico-chemical and microbiological aspects in composting of grape pulps. Biol. Wastes 1990, 34, 251–258. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel application and industrial exploitation of winery by-products. Bioresour. Bioprocess 2018, 5, 46. [Google Scholar] [CrossRef]
- Bertran, E.; Sort, X.; Soliva, M.; Trillas, I. Composting winery waste: Sludges and grape stalks. Bioresour. Technol. 2004, 95, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Inbar, Y.; Hadar, Y.; Chen, Y. Characterization of humic substances formed during the composting of solid wastes from wineries. Sci. Total Environ. 1992, 113, 35–48. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- Lachmana, J.; Hejtmánková, A.; Hejtmánková, K.; Hornícková, S.; Pivec, V.; Skala, O.; Dedina, M.; Pribyl, J. Towards complex utilization of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crop. Prod. 2013, 49, 445–453. [Google Scholar] [CrossRef]
- Muranyi, Z.; Papp, L. “Enological” Metal Speciation Analysis. Michrochem. J. 1998, 60, 134–142. [Google Scholar] [CrossRef]
- Teissedre, P.L.; Cabanis, M.T.; Champagnol, F.; Cabanis, J.C. Lead Distribution in Grape Berries. Am. J. Enol. Viticult. 1994, 45, 220–228. [Google Scholar]
- Jakubowski, N.; Brandt, R.; Stuewer, D.; Eschnauer, H.R.; Gortges, S. Analysis of wines by ICP-MS: Is the pattern of the rare earth elements a reliable fingerprint for the provenance? Fresenius’. J. Anal. Chem. 1999, 364, 424–428. [Google Scholar] [CrossRef]
- Nicolini, G.; Larcher, R. Evidence of changes in the micro-element composition of wine due to the yeast strain. Rivista di Viticoltura e di Enologia. 2003, 56, 45–48. [Google Scholar]
- Kristl, J.; Veber, M.; Slekovec, M. The contents of Cu, Mn, Zn, Cd, Cr and Pb at different stages of the winemaking process. Acta Chim. Slov. 2003, 50, 123–136. [Google Scholar]
- Catarino, S.; Pimentel, I.; Curvelo-Garcia, A.S. Determination of copper in wine by EAAS using conventional and fast thermal programs: Validation of analytical methods. At. Spectrosc. 2005, 26, 73–78. [Google Scholar]
- Bekker, M.Z.; Day, M.P.; Smith, P.A. Changes in metal ion concentrations in a Chardonnay wine related to oxygen exposure during vinification. Molecules 2019, 24, 1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darret, G.; Couzy, F.; Antonie, J.M.; Magliola, C.; Mareschi, J. Estimation of Minerals and Trace Elements Provided by Beverages for the Adult in France. Ann. Nut. Metab. 1986, 30, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Stockley, C.S.; Smith, L.H.; Guerin, P.; Brückbauer, H.; Johnstone, R.S.; Tiller, K.G.; Lee, T.H. The relationship between vineyard soil lead concentration and the concentration of lead in grape berries. Aust. J. Grape Wine Res. 1997, 3, 133–140. [Google Scholar] [CrossRef]
- ellerin, P.; O’ Neill, M.A.; Pierre, C.; Cabanis, H.T.; Darvill, A.G.; Albersheim, P.; Moutounet, M. Lead complexation in wines with the dimers of the grape pectic polysaccharide rhamnogalacturonan II. J. Int. Sci. Vigne Vin. 1997, 31, 33–41. [Google Scholar]
- Henick-Kling, T.; Stowsand, G.S. Lead in wine. Am. J. Enol. Viticult. 1993, 44, 459–463. [Google Scholar]
- Esparza, I.; Salinas, I.; Caballero, I.; Santamaria, C.; Calvo, I.; Garcia-Mina, J.M.; Fernández, J.M. Evolution of metal and polyphenol content over a 1-year period of vinification: Sample fractionation and correlation between metals and anthocyanins. Anal. Chim. Acta. 2004, 524, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Bimpilas, A.; Tsimogiannis, D.; Balta-Brouma, K.; Lymperopoulou, T.; Oreopoulou, V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 2015, 178, 164–171. [Google Scholar] [CrossRef]
- Castiñeira-Gómez, M.M.; Brandt, R.; Jakubowski, N.; Andersson, J. Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma-Mass Spectrometry. J. Agr. Food Chem. 2004, 52, 2953–2961. [Google Scholar] [CrossRef]
- Papageorgiou, F.; Karampatea, K.; Mitropoulos, A.C.; Kyzas, G.Z. Determination of metals in Greek wines. Int. J. Environ. Sci. Te. 2019, 16, 347–356. [Google Scholar] [CrossRef]
- Brandolini, V.; Tedeschi, P.; Capece, A.; Maietti, A.; Mazzotta, D.; Salzano, G.; Paparella, A.; Romano, P. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World J. Microb. Biot. 2002, 18, 499–503. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable options for the utilization of solid residues from wine Production. Waste Man. 2017, 60, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Narukawa, T.; Iwai, T.; Chiba, K. Determination of inorganic arsenic in grape products using HPLC-ICP-MS. Anal. Sci. 2018, 34, 687–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopfer, H.; Nelson, J.; Collins, T.S.; Heymann, H.; Ebeler, S.E. The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chem. 2015, 172, 486–496. [Google Scholar] [CrossRef]
- Rossano, E.C.; Szligagyi, Z.; Malorni, A.; Pocsfalvi, G. Influence of winemaking practices on the concentration of rare earth elements in white wines studied by inductively coupled plasma mass spectrometry. J. Agr. Food Chem. 2007, 55, 311–317. [Google Scholar] [CrossRef]
- Bayhan, Y.K.; Keskinler, B.; Cakici, A.; Levent, M.; Akay, G. Removal of divalent heavy metal mixtures from water by Saccharomyces Cerevisiae using crossflow microfiltration. Water Res. 2001, 35, 2191–2200. [Google Scholar] [CrossRef]
- Thomas, C.S.; Boulton, R.B.; Silacci, M.W.; Gubler, W.D. The Effect of Elemental Sulfur, Yeast Strain, and Fermentation Medium on Hydrogen Sulfide Production During Fermentation. Am. J. Enol. Viticult. 1993, 44, 211–216. [Google Scholar]
- Almeida, C.M.; Vasconcelos, M.T. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. J. Agr. Food Chem. 2003, 51, 4788–4798. [Google Scholar] [CrossRef]
- Coetzee, P.P.; Steffens, F.E.; Eiselen, R.J.; Augustyn, O.P.; Balcaen, L.; Vanhaecke, F. Multi-element analysis of South African wines by ICP-MS and their classification according to geographical origin. J. Agric. Food Chem. 2005, 53, 5060–5066. [Google Scholar] [CrossRef]
- Cugnetto, A.; Santagostini, L.; Rolle, L.; Guidoni, S.; Gerbi, V.; Novello, V. Tracing the “terroirs” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Sci. Hortil. 2014, 172, 101–108. [Google Scholar]
- Stafilov, T.; Karadjova, I. Atomic absorption spectrometry in wine analysis. Maced. J. Chem. Chem. Eng. 2009, 28, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Available online: www.r-project.org (accessed on 26 June 2020).
- Fox, J.; Bouchet-Valat, M.; Andronic, L.; Ash, M.; Boye, T.; Calza, S.; Chang, A.; Grosjean, P.; Heiberger, R.; Pour, K.K.; et al. Rcmdr: R Commander. R package version 2.5-2. 2019. Available online: https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/ (accessed on 11 November 2019).
- Leardi, R.; Melzi, C.; Polotti, G. CAT Chemometric Agile Tool. 2019. Available online: http://gruppochemiometria.it/index.php/software (accessed on 11 November 2019).
Sample Availability: Samples are not available. |
B | Na | Mg | Al | P | Ca | Fe | Mn | Sr | Ba | Cu | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
O | 20400 ± 15 | 114284 ± 15800 | 509700 ± 10200 | 8789 ± 807 | 1189100 ± 198000 | 282814 ± 36300 | 12024 ± 786 | 4453 ± 205 | 4100 ± 200 | 652 ± 120 | 3930 ± 110 | 4110 ± 800 |
A | 4141± 163 | 10059± 321 | 112665± 1700 | 6366± 571 | 276610± 13000 | 28265± 3979 | 6591± 662 | 613± 19 | 493± 37 | 45 ± 2 | 15747± 778 | 6706± 132 |
B | 3876± 213 | 5235± 321 | 114086± 860 | 740±368 | 127081±1204 | 18018 ± 1974 | 735 ± 153 | 560 ± 5 | 419 ± 6 | 46 ± 5 | 220 ± 87 | 730 ± 142 |
C | 26365 ± 2980 | 42434 ± 5410 | 684204 ± 86370 | 17025 ± 1981 | 1013301 ± 1670 | 354918 ± 6033 | 24295 ± 1289 | 4594 ± 592 | 13219 ± 1802 | 3162 ± 53 | 3972 ± 401 | 5142 ± 370 |
D | 3837± 100 | 4602± 598 | 115544±1282 | 550±279 | 144600±1702 | 16778 ± 1503 | 511 ± 3 | 531 ± 7 | 416 ± 7 | 46 ± 4 | 163 ± 9 | 1012 ± 171 |
E | 32080 ± 2935 | 16227 ± 2820 | 1039619 ± 110768 | 83940 ± 2375 | 3268118 ± 295792 | 1023100 ± 139161 | 132907 ± 4443 | 11555 ± 1976 | 14421 ± 7 | 3162 ± 53 | 14768 ± 1009 | 12467 ± 682 |
F | 3776± 348 (80000) | 5494± 560 | 116005 ± 4088 | 1086±139 (10000) | 158364±3721 | 19217 ± 1138 | 2086 ± 404 (20000) | 583 ± 21 | 460 ± 12 | 58 ± 4 | 2074 ± 130 (1000) | 1824 ± 445 (5000) |
G | 4216 ± 195 | 19265 ± 378 | 108524 ± 995 | 4017 ± 1491 | 222788 ± 6742 | 23322 ± 7411 | 3222 ± 876 | 639 ± 13 | 437 ± 27 | 74 ± 16 | 1350 ± 167 | 1092 ± 143 |
Fraction | Ti | Ni | V | Cr | Co | As | Se | Cd | Hg | Pb |
---|---|---|---|---|---|---|---|---|---|---|
O | 372 ± 97 | 230 ± 50 | 63 ± 18 | 25 ± 1 | 12 ± 2 | 8.2 ± 0.5 | 20 ± 3 | 6.2 ± 1.5 | 4.8 ± 0.2 | 24 ± 9 |
A | 121 ± 28 | 1427 ± 27 | 29 ± 3 | 32 ± 1 | 18.8 ± 0.6 | 4.3 ± 0.2 | 7.9 ± 0.2 | 2.0 ± 0.2 | 0.7 ± 0.2 | 190 ± 9 |
B | 25 ± 5 | 93 ± 8 | 18 ± 3 | 19 ± 9 | 4.36 ± 0.03 | 0.9 ± 0.1 | 5 ± 1 | 0.58 ± 0.04 | 0.5 ± 0.1 | 12 ± 5 |
C | 941 ± 45 | 259 ± 25 | 94 ± 11 | 59 ± 10 | 12.9 ± 0.8 | 24 ± 3 | 426 ± 24 | 1.46 ± 0.02 | 30 ± 3 | 36 ± 11 |
D | 18 ± 5 | 91 ± 2 | 21 ± 4 | 21 ± 2 | 4.78 ± 0.11 | 1.9 ± 1.1 | 4 ± 1 | 0.57 ± 0.02 | 0.2 ± 0.1 | 7 ± 1 |
E | 3368 ± 135 | 281 ± 81 | 204 ± 27 | 299 ± 79 | 37 ± 5 | 50 ± 3 | 63 ± 14 | 4.6 ± 0.3 | 12 ± 2.0 | 129 ± 29 |
F | 54 ± 2 | 94 ± 4(100) | 29 ± 3 | 14 ± 3(100) | 3.7 ± 0.2 | 2.4 ± 0.2(200) | 5 ± 1 | 2.0 ± 0.2(10) | 0.4 ± 0.2 | < LOD(100) |
G | 431 ± 68 | 61 ± 3 | 18 ± 2 | 13 ± 3 | 3.9 ± 0.2 | 3.2 ± 0.6 | 9 ± 1 | 0.77 ± 0.03 | 0.4 ± 0.1 | 13 ± 3 |
Fraction | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | 8.8 ± 1.7 | 25 ± 2 | 20 ± 3 | 16 ± 3 | 10.0 ± 0.2 | 1.3 ± 0.2 | 14 ± 2 | 7.9 ± 0.5 | |||||
A | 160 ± 20 | 292 ± 18 | 141 ± 26 | 16 ± 2 | 96 ± 9 | 21 ± 2 | 33 ± 2 | 13 ± 2 | 84 ± 6 | 228 ± 40 | |||
B | 69 ± 13 | 104 ± 15 | 19 ± 2 | 164 ± 5 | 36 ± 7 | 31 ± 5 | 600 ± 10 | ||||||
C | 1415 ± 62 | 4276 ± 200 | 960 ± 80 | 864 ± 60 | 1512 ± 50 | 131 ± 26 | 410 ± 65 | 39 ± 4 | 325 ± 52 | 50 ± 6 | 385 ± 70 | 145 ± 22 | 2836 ± 130 |
D | 67 ± 8 | 244 ± 41 | 351 ± 17 | 135 ± 15 | 35 ± 6 | 56 ± 5 | 432 ± 80 | ||||||
E | 4580 ± 212 | 10060 ± 210 | 1900 ± 420 | 952 ± 50 | 2518 ± 260 | 250 ± 15 | 1693 ± 320 | 57 ± 5 | 488 ± 75 | 87 ± 17 | 532 ± 102 | 123 ± 22 | 1120 ± 205 |
F | 46 ± 7 | 300 ± 45 | 161 ± 30 | 166 ± 22 | 102 ± 21 | 65 ± 13 | 375 ± 61 | ||||||
G | 705 ± 133 | 2140 ± 120 | 760 ± 25 | 332 ± 52 | 840 ± 57 | 55 ± 2 | 303 ± 14 | 57 ± 2 | 220 ± 42 | 44 ± 1 | 89 ± 2 | 77 ± 13 | 292 ± 34 |
Fraction | Yield (%) | Concentration (mg/kg) # | % Water | Total Mass of Potassium (mg) |
---|---|---|---|---|
Pressed pomace | 27 | 33800 | 80 | 1825 |
Lees | 3 | 3100 | 85 | 14 |
Wine | 70 | 1477 | 100 | 1034 |
Sum | 2873 | |||
grapes | 11100 | 75 | 2775 | |
yeasts | 13100 | 20 | ||
Mass supplied by grapes + yeasts | 2795 | |||
Deviation (%) * | 3.4 |
ICP-OES | |
Variable | Values and Unities |
Nebulizer liquid flow rate | 1.0 mL min−1 |
Nebulizer gas flow rate | 0.7 L min−1 |
Outer plasma gas flow rate | 15 L min−1 |
Intermediate plasma gas flow rate | 1.5 L min−1 |
RF power | 1.4 kW |
ICP-MS | |
Variable | Values and Unities |
Nebulizer liquid flow rate | 0.4 mL min−1 |
Nebulizer gas flow rate | 0.7 L min−1 |
Outer plasma gas flow rate | 15 L min−1 |
Intermediate plasma gas flow rate | 1.0 L min−1 |
RF power | 1.6 kW |
He (Collision cell) gas flow rate | 4.3 mL min−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bica, A.; Sánchez, R.; Todolí, J.-L. Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties. Molecules 2020, 25, 2961. https://doi.org/10.3390/molecules25132961
Bica A, Sánchez R, Todolí J-L. Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties. Molecules. 2020; 25(13):2961. https://doi.org/10.3390/molecules25132961
Chicago/Turabian StyleBica, Alexandra, Raquel Sánchez, and José-Luis Todolí. 2020. "Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties" Molecules 25, no. 13: 2961. https://doi.org/10.3390/molecules25132961
APA StyleBica, A., Sánchez, R., & Todolí, J. -L. (2020). Evolution of the Multielemental Content along the Red Wine Production Process from Tempranillo and Grenache Grape Varieties. Molecules, 25(13), 2961. https://doi.org/10.3390/molecules25132961