Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Alga
2.2. Metals
2.3. Alginate Source
2.4. Immobilization Procedure
2.5. Toxicity Testing
2.5.1. Microplate Procedure with Free Cells
2.5.2. Microplate Procedure with Algae-Alginate Beads
2.5.3. Toxicity-Response Parameter
2.5.4. Calculation of EC50 and EC100
2.6. Statistical Analysis of Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Föistner, V.; Wittmann, G.T.W. Metal Pollution in Aquatic Environment; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979. [Google Scholar]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rana, M.S.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Soliman, M.H.; Elkelish, A.; et al. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Elkelish, A.; Soliman, M.; Elansary, H.O.; Zaid, A.; Wani, S.H. Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants 2020, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, C.; Ryding, S.-O.; Claesson, A.; Forsberg, A. Water chemical analysis and/or algal assays? Sewage effluent and polluted lake water studies. Mitt. Int. Ver. Theor. Angew. Limnol. 1978, 21, 352–363. [Google Scholar]
- Miller, W.E.; Green, J.C.; Sheroyama, T. The Selenastrumcapricornutum Printz Algal Assay Bottle Test; Environmental Research Laboratory, Office of Research and Development, Environmental Protection Agency: Corvallis, OR, USA, 1978. [Google Scholar]
- Greene, J.C.; Bartles, C.I.; Warren-Hicks, W.J.; Parkhurst, B.R.; Linder, G.L.; Peterson, S.A.; Miller, W.E. Protocols for Short Term Toxicity Screening of Hazardous Waste Site; EPA/600/3-88/029; U.S. Environmental Protection Agency: Corvallis, OR, USA, 1989. [Google Scholar]
- ISO. Water Quality-Algal Growth Inhibition Test; Draft International Standard: Geneva, Switzerland, 1987. [Google Scholar]
- OECD. Guidelines for the Testing of Chemicals: Draft Revised Guideline and 201 (Freshwater Algae and Cyanobacteria, Growth Inhibition Test; Organization for Economic Cooperation and Development: Paris, France, 2002; p. 21. [Google Scholar]
- Franklin, N.M.; Stauber, J.L.; Apte, S.C.; Lim, R.P. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Enviro. Toxicol. Chem. 2002, 21, 742–751. [Google Scholar] [CrossRef]
- Lukavský, J.; Komárek, J.; Lukavská, A.; Ludvík, J.; Pokorný, J. Metabolic activity and cell structure of immobilized algal cells (Chlorella, Scenedesmus). Arch. Hydrobiol. 1986, 43, 261–297. [Google Scholar]
- Kaparapu, J.; Geddada, M.N.R. Applications of immobilized algae. J. Algal Biomass Util. 2016, 7, 122–128. [Google Scholar]
- Lau, P.S.; Tam, N.F.Y.; Wang, Y.S. Wastewater Nutrients (N and P) Removal by Carrageenan and Alginate Immobilized Chlorella Vulgaris. Environ. Technol. 1997, 18, 945–951. [Google Scholar] [CrossRef]
- Barkley, N.P. Extraction of mercury from groundwater using immobilized algae. J. Air Waste Manag. Assoc. 1991, 41, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Joo, D.S.; Cho, M.G.; Lee, J.S.; Park, J.H.; Kwak, J.K.; Han, Y.H.; Bucholz, R. New strategy for the cultivation of microalgae using microencapsulation. J. Microencapsul. 2001, 18, 567–576. [Google Scholar]
- Dos Santos, M.M.; Moreno-Garrido, I.; Goncalves, F.; Soares, A.M.; Ribeiro, R. An in situ bioassay for estuarine environments using the microalga Phaeodactylumtricornutum. Environ. Toxicol Chem. 2002, 21, 567–574. [Google Scholar] [CrossRef]
- Podola, B.; Nowack, E.C.; Melkonian, M. The use of multiple strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens. Bioelectron. 2004, 19, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hamid, M.I. Development and application of a simple procedure for toxicity testing using immobilized algae. Water Sci. Technol. 1996, 23, 129–138. [Google Scholar] [CrossRef]
- Davis, T.A.; Lpanes, F.; Volesky, B.; Mucci, A. Metal selectivity of Sargassum spp. and their alginates in relation to their α- L- guluronic acid content and conformation. Environ. Sci. Technol. 2003, 37, 261–267. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Awasthi, M.; Rai, L.C. Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: A comparative study. Ann. Microbiol. 2004, 54, 257–267. [Google Scholar]
- Abdel-Hamid, M.I. Immobilization of algal cells: A first Biotechnological Step for the Handling of Cell Material for Toxicity Screening and Water Quality Studies. In Proceedings of the First Egyptian-Italian Symposium on Biotechnology, Cairo, Morocco, 21–23 November 1992; pp. 295–302. [Google Scholar]
- Van Donk, E.; Abdel-Hamid, M.I.; Faafeng, B.A.; Källqvist, T. Effects of Dursban® 4E and its carrier on three algal species during exponential and P-limited growth. Aquat. Toxicol. 1992, 23, 181–192. [Google Scholar] [CrossRef]
- Steinman, A.D.; Lamberti, G.A. Biomass and pigments of benthic algae. In Methods in Stream Ecology; Hauer, F.R., Lamberti, G.A., Eds.; Academic Press: San Diego, CA, USA, 1996; p. 297. [Google Scholar]
- Walsh, G.E.; Deans, C.H.; Mclaughlin, L.L. Comparison of four methods for calculating the EC50 from algal population growth. Environ. Toxicol. Chem. 1987, 6, 767–770. [Google Scholar]
- Abdel-Hamid, M.I.; Shaaban-Dessouoki, S.A.; Skulberg, O.M. Biological Indexing of Water Quality of the River Nile. In Proceedings International Conference, Cairo, Morocco, 3–5 February 1992; Ministry of Public Works and Water Resources: Cairo, Morocco, 1992. [Google Scholar]
- Peterson, H.G.; Healey, F.P.; Wagemann, R. Metal toxicity to algae: A highly PH dependent phenomenon. Can. J. Fish. Aquat. Sci. 1984, 41, 974–979. [Google Scholar] [CrossRef]
- Petrovic, A.; Simonic, M. Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. Int. J. Environ. Sci. Technol. 2016, 13, 1761–1780. [Google Scholar] [CrossRef]
- Górak, M.; Żymańczyk-Duda, E. Reductive activity of free and immobilized cells of cyanobacteria toward oxophosphonates—Comparative study. J. Appl. Phycol. 2017, 29, 245–253. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bartlet, L.; Rabe, F.W.; Funk, W.H. Effects of copper, zinc and cadmium on Selenastrum capricornatum. Water Res. 1974, 8, 179–185. [Google Scholar] [CrossRef]
- Blaise, C.; Legautt, R.; Bermingham, N.; van Coillie, R.; Vasseur, P. A simple microplate algal assay technique for aquatic toxicity. Toxic. Assess. 1986, 1, 261–281. [Google Scholar] [CrossRef]
- Collard, J.M.; Matagne, R.F. Isolation and genetic analysis of Chlamydomonas reinhardtii strains resistant to cadmium. Appl. Environ. Microbiol. 1990, 56, 2051–2055. [Google Scholar] [CrossRef] [PubMed]
- Cain, J.R.; Paschal, D.C.; Hayden, M.C. Toxicity and bioaccumulation of cadmium in the colonial green algae Scenedesmus obliquus. Arch. Environ. Contam. Toxicol. 1980, 9, 9–16. [Google Scholar] [CrossRef]
- Einicker-Lamas, M.; Soares, M.J.; Soares, M.S.; Oliveira, M.M. Effects of cadmium on Euglena gracilis membrane lipids. Braz. J. Med. Biol. Res. 1996, 29, 941–948. [Google Scholar]
- Shanker, K.; Mishra, S.; Srivastava, S.; Srivastava, R.; Daas, S.; Prakash, S.; Srivastava, M.M. Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull. Environ. Contam. Toxicol. 1996, 56, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Price, N.M.; Morel, F.M.M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 1990, 344, 658–660. [Google Scholar] [CrossRef]
- Lee, J.G.; Roberts, S.B.; Morel, F.M. Cadmium: A nutrient for the marine diatom Thalassiosiraweissjlogii. Limnol. Oceanogr. 1995, 40, 1056–1063. [Google Scholar] [CrossRef]
- Lane, T.W.; Morel, F.M. Regulation of Carbonic Anhydrase Expression by Zinc, Cobalt, and Carbon Dioxide in the Marine Diatom Thalassiosiraweissflogii. Plant Physiol. 2001, 123, 345–352. [Google Scholar] [CrossRef]
- Butler, A. Acquisition and utilization of transition metal ions by marine organisms. Science 1998, 281, 207–210. [Google Scholar] [CrossRef]
- Rosko, J.J.; Rachlin, J.W. The Effect of Copper, Zinc, Cobalt and Manganese on the Growth of the Marine Diatom Nitzschia closterium; Torrey Botanical Society: New York, NY, USA, 1975. [Google Scholar]
- Plekhanov, S.E.; Chemeris, U.K. Early toxic effect of zinc, cobalt, and cadmium on photosynthetic activity of green alga Chlorella pyrenoidosa Chick S-39. Biol. Bull. 2003, 5, 610–616. [Google Scholar]
- Abdel Hameed, M.S. Continuous removal and recovery of lead by alginate beads, free and alginate-immobilized Chlorella vulgaris. Afr. J. Biotechnol. 2006, 5, 1819–1823. [Google Scholar]
- El-Sheekh, M.M.; El-Nagger, A.H.; Osman, M.E.H.; El-Mazaly, E. Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidiumminutum and Nitzschiaperminta. Baraz. J. Plant Physiol. 2003, 15, 59–166. [Google Scholar]
- Gajdosova, J.; Reichrtova, E. Different growth response of Euglena gracilis to Hg, Cd, Cr, and Ni compounds: Fresenius. J. Anal. Chem. 1996, 354, 641–642. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, L.F.; Ziegler, H. Effect of sub-lethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Plant Physiol. 1993, 142, 167–172. [Google Scholar] [CrossRef]
- Startton, G.W.; Hurker, A.L.; Corke, C.T. Effect of mercuric ion on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis. Appl. Environ. Microbiol. 1979, 38, 537–543. [Google Scholar] [CrossRef]
- Rai, L.C.; Dey, R. Environmental effects on the toxicity of methyl mercuric chloride to Chlorella vulgaris. Acta Hydrochim. Hydrobiol. 1980, 8, 319–327. [Google Scholar]
- Sorentino, C. The effects of heavy metals on phytoplankton. A review phykos 18, 149–161. Stains resistant to cadmium. App. Environ. Microbiol. 1979, 56, 2051–2055. [Google Scholar]
- O’kelly, J.C. Inorganic Nutrients. In Algal Physiology and Biochemistry; Stewart, W.D.P., Ed.; Blackwell Scientific publications: Oxford, UK, 1974; pp. 610–635. [Google Scholar]
- Wong, P.K.; Chang, L. Effects of copper, chromium and nickel on growth, photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa. Environ. Pollut. 1991, 72, 127–139. [Google Scholar] [CrossRef]
- De Filippis, L.F. The effect of sub-lethal concentrations of mercury and zinc on Chlorella. v. The counteraction of metal toxicity by selenium and sulphhydryl compounds. Z. Pflanzenphysiol. 1979, 93, 63–68. [Google Scholar] [CrossRef]
- De Filippis. The effect of heavy metal compounds on the permeability of Chlorella celli. Z. Pflanzenphysiol. 1979, 922, 39–49. [Google Scholar]
- Quartacci, M.F.; Cosi, E.; Navari-Izzo, F. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J. Exp. Bot. 2001, 52, 77–84. [Google Scholar] [PubMed]
- Mostowska, A. Environmental Factors Affecting Chloroplasts. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Marcel Dekker: New York, NY, USA, 1997; pp. 407–426. [Google Scholar]
- Reiriz, S.; Cid, A.; Torres, E.; Abalde, J.; Herrero, C. Different responses of the marine diatom Phaeodactylumtricornutum to copper toxicity. Microbiologia 1994, 10, 263–272. [Google Scholar] [PubMed]
- Trollope, D.R.; Evans, B. Concentrations of copper, iron, lead, nickel and zinc in freshwater algal blooms. Environ. Pollut. 1970, 11, 109–116. [Google Scholar] [CrossRef]
- Soliman, M.; Alhaithloul, H.A.; Hakeem, K.R.; Alharbi, B.M.; El-Esawi, M.; Elkelish, A. Elkelish Exogenous Nitric Oxide Mitigates Nickel-Induced Oxidative Damage in Eggplant by Upregulating Antioxidants, Osmolyte Metabolism, and Glyoxalase Systems. Plants 2019, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Whitton, B.A.; Say, P.J.; Jupp, B.P. Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Environ. Pollut. 1982, 3, 299–316. [Google Scholar] [CrossRef]
- Loez, C.R.; Topalian, M.L.; Salibian, A. Effects of zinc on the structure and growth dynamics of a natural freshwater phyto- plankton assemblages reared in the laboratory. Environ. Pollut. 1995, 88, 275–281. [Google Scholar] [CrossRef]
- Meylan, S.; Odzak, N.; Behra, R.; Sigg, L. Speciation of copper and zinc in natural freshwater: Comparison of volumetric measurements, diffusive gradients in the thin film (DGT) and chemical equilibrium models. Anal. Chim. Acta 2004, 510, 91–100. [Google Scholar] [CrossRef]
- Falchuk, K.H.; Fawcett, D.W.; Vallee, B.L. Role of zinc in cell division of Euglena gracilis. J. Cell Sci. 1975, 17, 57–78. [Google Scholar]
- Paulsson, M.; Nyström, B.; Blanck, H. Long term toxicity of zinc to bacteria and algae in periphyton communities from the River GötaÄlv, based on a microcosm study. Aquat. Toxicol. 2000, 47, 243–257. [Google Scholar] [CrossRef]
- Bànerjee, M.; Mishra, S.; Chatterjee, J. Scavenging of nickel and chromium toxicity in Alucosirafertilissimaby immobilization. Effect on nitrogen assimilating enzymes. Electron. J. Biotechnol. 2004, 7, 305–315. [Google Scholar] [CrossRef][Green Version]
- Hörcsik, Z.T.; Balogh, Á. Intracellular distribution of chromium and toxicity on growth in Chlorella pyrenoidosa. Acta Biol. Szeged. 2002, 46, 57–58. [Google Scholar]
- Rachlin, J.W.; Grosso, A. The growth response of the green alga Chlorella vulgaris to combined cation exposure. Arch. Environ. Contam. Toxicol. 1993, 24, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Greger, M.; Tillberg, J.; Johansson, M. Aluminium effects on Scenedesmusobtusiusculus with different phosphorus status. I. Mineral uptake. Physiol. Plant. 1992, 84, 193–201. [Google Scholar]
- Abdel-Hamid, M.I.; Skulberg, O.M. Effect of selenium on the growth of some selected green and blue-green algae. Lakes Reserv.: Res. Manag. 1995, 1, 205–211. [Google Scholar] [CrossRef]
- Lindström, K. Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Dev. Hydrobiol. 1983, 13, 35–47. [Google Scholar] [CrossRef]
- Lindström, K. Selenium requirement of the dinoflagellate Pendinopsisborgei (Lemm). Int. Revueges. Hydrobiol. 1985, 70, 77–78. [Google Scholar] [CrossRef]
- Sielicki, M.; Burnham, J.C. The effect of selenite on the physiological and morphological properties of the blue-green alga phormidiumluridum var. olivacea. J. Phycol. 1973, 9, 509–514. [Google Scholar]
- Agency for Toxic Substances, Disease Registry (ARSDR). Toxologic Profile of Arsenic; ATSDR: Atlanta, GA, USA, 2000. [Google Scholar]
- Blank, H. Species dependent variation among aquatic organisms in their sensitivity to chemicals. Ecol. Bull. 1984, 36, 107–119. [Google Scholar]
- Fuhua, C.; Weiqi, C.; Shugui, D. Toxicities of four arsenic species to Scenedesmusobliguus and influence of phosphate on inorganic arsenic toxicities. Toxicol. Environ. Chem. 1994, 41, 1–7. [Google Scholar] [CrossRef]
- Blanck, H.; Wangberg, S.A. Validity of an ecotoxicological test system Short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can. J. Fish. Aquat. Sci. 1988, 45, 1807–1815. [Google Scholar] [CrossRef]
- Knauer, K.; Behra, R.; Hemond, H. Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient. Aquat. Toxicol. 1999, 46, 221–230. [Google Scholar] [CrossRef]
- El-Naggar, N.E.; Hamouda, R.A.; Mousa, I.E.; Abdel-Hamid, M.S.; Rabei, N.H. Biosorption optimization, characterization, immobilization and application of Gelidiumamansii biomass for complete Pb2+ removal from aqueous solutions. Sci. Rep. 2018, 8, 13456. [Google Scholar] [CrossRef]
- Rivkin, R.B. Effects of lead on growth of marine diatom Skeletonemacostatum. Mar. Biol. 1979, 50, 239–247. [Google Scholar] [CrossRef]
- Seiler, H.G.; Sigel, H.; Sigel, A. Handbook on the Toxicity of Tnorganic Compound; Marcel Dekker. Inc.: New York, NY, USA, 1988; p. 633. [Google Scholar]
- Clayton, G.D.; Clayton, F.E. Patty’s Industrial Hygiene and Toxicology, 3rd ed.; John Wiley Sons: New York NY, USA, 1981–1982; Volume 2A, 2B, 2C: Toxicology; p. 2131. [Google Scholar]
- Neal, C.; Smith, C.J.; Jeffery, H.A.; Jarvie, H.P.; Robson, A.J. Trace element concentrations in the major rivers entering the Humber estuary, NE England. J. Hydrol. 1996, 182, 37–64. [Google Scholar] [CrossRef]
- Baxter, M.; Jensen, T. Uptake of magnesium, strontium, barium, and manganese by Plectonemaboryanum (cyanophyceae) with special reference to polyphosphate bodies. Protoplasma 1980, 104, 81–89. [Google Scholar] [CrossRef]
- Wilkinson, S.C.; Goulding, K.H.; Robinson, P.K. Mercury removal by immobilized algae in batch culture systems. J. Appl. Phycol. 1990, 2, 223–230. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wang, Y.S.; Simpson, C.G. Repeated removal of copper by alginate beads and the enhancement by microalgae. Biotechnol. Tech. 1998, 12, 187–190. [Google Scholar] [CrossRef]
- Myklestad, S. Ion-exchange properties of brown algae I. Determination of rate mechanism for calcium hydrogen ion exchange for particles from Laminariahyperborea and Laminariadigitata. J. Appl. Chem. 1968, 18, 30–36. [Google Scholar] [CrossRef]
- Prask, I.A.; Plocke, D.J. A Role for Zinc in the Structural Integrity of the Cytoplasmic Ribosomes of Euglena gracilis. Plant Physiol. 1971, 48, 150–155. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds and the algal species are available from the authors. |
Name | Formula | Tested as Metal Ions | Obtained from |
---|---|---|---|
Cadmium chloride | CdCl2·2½ H2O | Cd2+ | BDH, Dubai, UAE |
Cobalt chloride | CoCl2·6H2O | Co2+ | MERCK, Darmstadt, Germany |
Mercuric chloride | HgCl2 | Hg2+ | MERCK, Darmstadt, Germany |
Cupric chloride | CuCl2·2H2O | Cu2+ | MERCK, Darmstadt, Germany |
Nickel sulfate | NiSO4·6H2O | Ni2+ | MERCK, Darmstadt, Germany |
Zinc chloride | ZnCl2 | Zn2+ | MERCK, Darmstadt, Germany |
Chromium nitrate | Cr (NO3)3·9H2O | Cr3+ | MERCK, Darmstadt, Germany |
Aluminum chloride | AlCl3·6HO | Al3+ | MERCK, Darmstadt, Germany |
Selenium dioxide | SeO2 | Se4+ | MERCK, Darmstadt, Germany |
Sodium selenite a | Na2SeO3·5H2O | Se4+ | MERCK, Darmstadt, Germany |
Sodium arsenate | Na2HAsO4·7HO | As5+ | MERCK, Darmstadt, Germany |
Lead nitrate | Pb (NO3)2 | Pb2+ | BDH, Dubai, UAE |
Strontium chloride | SrCl2·6H2O | Sr2+ | MERCK, Darmstadt, Germany |
EC50 (mg L−1) a | EC100 (mg L−1) b | ||||||
---|---|---|---|---|---|---|---|
Free Cells | Immobilized Cells | Free Cells | Immobilized Cells | ||||
Chemical | Tested as | Old c | New d | Old | New | ||
CdCl2·2½ H2O | Cd2+ | 0.018 | 0.09 ***e | 0.09 | 0.1 | 1.0 | 1.0 |
CoCl2·6H2O | Co2+ | 0.03 | 0.06 *** | 0.061 | 0.32 | 1.0 | 1.0 |
HgCl2 | Hg2+ | 0.039 | 0.06 *** | 0.063 | 0.032 | 1.0 | 1.0 |
CuCl2·2H2O | Cu2+ | 0.048 | 0.05 | 0.05 | 0.1 | 0.1 | 0.1 |
NiSO4·6H2O | Ni2+ | 0.055 | 0.03 *** | NT f | 0.1 | 3.2 | NT |
ZnCl2 | Zn2+ | 0.08 | 0.1 * | 0.1 | 0.32 | 0.32 | 0.32 |
Cr(NO3)3·9H2O | Cr3+ | 0.2 | 0.3 *** | 0.3 | 1.0 | 3.2 | 3.2 |
AlC3·6HO | Al3+ | 0.75 | 1.8 *** | NT | 1.0 | 3.2 | NT |
SeO2 | Se4+ | 1.2 | 1.4 | NT | 3.2 | 3.2 | NT |
Na2SeO3·5H2O | Se4+ | 3.0 | 3.0 | NT | 32 | 32 | NT |
Na2HAsO4·7HO | As5+ | 3.0 | 4.0 * | 4.0 | 32 | 32 | 32 |
Pb(NO3)2 | Pb2+ | 3.3 | 5.0 * | 5.0 | 32 | 32 | 32 |
SrCl2·6H2O | Sr2+ | 160 | 180 *** | NT | >320 | >320 | NT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hasawi, Z.M.; Abdel-Hamid, M.I.; Almutairi, A.W.; Touliabah, H.E. Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity. Molecules 2020, 25, 2847. https://doi.org/10.3390/molecules25122847
Al-Hasawi ZM, Abdel-Hamid MI, Almutairi AW, Touliabah HE. Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity. Molecules. 2020; 25(12):2847. https://doi.org/10.3390/molecules25122847
Chicago/Turabian StyleAl-Hasawi, Zaki M., Mohammad I. Abdel-Hamid, Adel W. Almutairi, and Hussein E. Touliabah. 2020. "Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity" Molecules 25, no. 12: 2847. https://doi.org/10.3390/molecules25122847
APA StyleAl-Hasawi, Z. M., Abdel-Hamid, M. I., Almutairi, A. W., & Touliabah, H. E. (2020). Response of Pseudokirchneriella subcapitata in Free and Alginate Immobilized Cells to Heavy Metals Toxicity. Molecules, 25(12), 2847. https://doi.org/10.3390/molecules25122847