All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications
Abstract
:1. Introduction
2. All-Cellulose Composites
2.1. Cellulose as a Biopolymer
2.2. Cellulose as a Reinforcement
2.3. Need for ACCs and Benefits
2.4. Fabrication Methods
2.5. Different Solvents
2.6. Cellulose Sources
2.7. The Role of Anti-Solvent in Cellulose Regeneration
2.8. ACCs Overview
3. Future Scope of ACCs and Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Henshaw, J.M.; Han, W.; Owens, A.D. An overview of recycling issues for composite materials. J. Thermoplast. Compos. Mater. 1996, 9, 4–20. [Google Scholar] [CrossRef]
- Conroy, A.; Halliwell, S.; Reynolds, T. Composite recycling in the construction industry. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1216–1222. [Google Scholar] [CrossRef]
- Dweib, M.A.; Hu, B.; O’Donnell, A.; Shenton, H.W.; Wool, R.P. All natural composite sandwich beams for structural applications. Compos. Struct. 2004, 63, 147–157. [Google Scholar] [CrossRef]
- Mohanty, A.; Wibowo, A.; Misra, M.; Drzal, L. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 363–370. [Google Scholar] [CrossRef]
- Netravali, A.N.; Chabba, S. Composites get greener. Mater. Today 2003, 6, 22–29. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276–277, 1–24. [Google Scholar] [CrossRef]
- Baillie, C. Green Composites: Polymer Composites and the Environment; CRC Press: Cambridge, UK; Boca Raton, FL, USA, 2004. [Google Scholar]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Stevens, E.S. Green Plastics: An Introduction to the New Science of Biodegradable Plastics; Princeton University Press: New Jersey, NJ, USA, 2002. [Google Scholar]
- Baghaei, B.; Skrifvars, M. Characterisation of polylactic acid biocomposites made from prepregs composed of woven polylactic acid/hemp–Lyocell hybrid yarn fabrics. Compos. Part A Appl. Sci. Manuf. 2016, 81, 139–144. [Google Scholar] [CrossRef]
- Keller, A. Compounding and mechanical properties of biodegradable hemp fibre composites. Compos. Sci. Technol. 2003, 63, 1307–1316. [Google Scholar] [CrossRef]
- Wollerdorfer, M.; Bader, H. Influence of Natural Fibres on the Mechanical Properties of Biodegradable Polymers. Ind. Crop. Prod. 1998, 8, 105–112. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. Acs Appl. Mater. Interfaces 2014, 6, 9822–9834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Pascual, A. Synthesis and applications of biopolymer composites. Int. J. Mol. Sci. 2019, 20, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, V.K.; Thakur, M. Functional Biopolymers; Thakur, V.K., Thakur, M.K., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Yan, Z.; Zhang, J.; Zhang, H.; Wang, H. Improvement of mechanical properties of noil hemp fiber reinforced polypropylene composites by resin modification and fiber treatment. Adv. Mater. Sci. Eng. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Capiati, N.J.; Porter, R.S. The concept of one polymer composites modelled with high density polyethylene. J. Mater. Sci. 1975, 10, 1671–1677. [Google Scholar] [CrossRef]
- Cabrera, N.; Alcock, B.; Loos, J.; Peijs, T. Processing of all-polypropylene composites for ultimate recyclability. J. Mater. Des. Appl. 2004, 218, 145–155. [Google Scholar] [CrossRef]
- Nishino, T.; Matsuda, I.; Hirao, K. All-cellulose composite. Macromolecules 2004, 37, 7683–7687. [Google Scholar] [CrossRef]
- Dassanayake, R.; Acharya, S.; Abidi, N. Biopolymer-based materials from polysaccharides: Properties, processing, characterization and sorption applications. IntechOpen 2018, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Kroon-Batenburg, L.M.J.; Kroon, J. The crystal and molecular structures of cellulose I and II. Glycoconj. J. 1997, 14, 677–690. [Google Scholar] [CrossRef]
- Sarko, A.; Southwick, J.; Hayashi, J. Packing analysis of carbohydrates and polysaccharides. 7. crystal structure of cellulose iiii and its relationship to other cellulose polymorphs. Macromolecules 1976, 9, 857–863. [Google Scholar] [CrossRef]
- O’Sullivan, A.C. Cellulose: The structure slowly unravels. Cellulose 1997, 4, 173–207. [Google Scholar] [CrossRef]
- Nishino, T.; Takano, K.; Nakamae, K. Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. Part B 1995, 33, 1647–1651. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Cabrera, R.; Meersman, F.; McMillan, P.; Dmitriev, V. Nanomechanical and Structural Properties of Native Cellulose Under Compressive Stress. Biomacromolecules 2011, 12, 2178–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichhorn, S.; Dufresne, A.; Aranguren, M.; Marcovich, N.; Capadona, J.; Rowan, S.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.G. Polypropylene transcrystallization at the surface of cellulose fibers. J. Polym. Sci. Polym. Lett. Ed. 1974, 12, 509–515. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Eichhorn, S.J.; Baillie, C.A.; Zafeiropoulos, N.; Mwaikambo, L.Y.; Ansell, M.P.; Dufresne, A.; Entwistle, K.M.; Herrera-Franco, P.J.; Escamilla, G.C.; Groom, L.; et al. Review: Current international research into cellulosic fibres and composites. J. Mater. Sci. 2001, 36, 2107–2131. [Google Scholar] [CrossRef]
- Saheb, D.N.; Jog, J.P. Natural fiber polymer composites: A review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-Based Bio- and Nanocomposites: A Review. Int. J. Polym. Sci. 2011, 2011, 837875. [Google Scholar] [CrossRef]
- Miao, C.; Hamad, W. Cellulose reinforced polymer composites and nanocomposites: A critical review. Cellulose 2013, 20, 2221–2262. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Hristov, V.; Vlachopoulos, J. Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol. Mater. Eng. 2007, 292, 608–619. [Google Scholar] [CrossRef]
- Lu, J.Z.; Negulescu, I.I.; Wu, Q. Maleated wood-fiber/high-density-polyethylene composites: Coupling mechanisms and interfacial characterization. Compos. Interfaces 2005, 12, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Wu, Q.; Yao, F.; Xu, Y. Preparation and properties of recycled HDPE/natural fiber composites. Compos. Part A 2007, 38, 1664–1674. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wu, Q.; Negulescu, I.I. Wood-fiber/high-density-polyethylene composites: Coupling agent performance. J. Appl. Polym. Sci. 2005, 96, 93–102. [Google Scholar] [CrossRef]
- Augier, L.; Sperone, G.; Vaca-Garcia, C.; Borredon, M.-E. Influence of the wood fibre filler on the internal recycling of poly (vinyl chloride)-based composites. Polym. Degrad. Stab. 2007, 92, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Bledzki, A.K.; Faruk, O. Influence of processing temperature on microcellular injection-moulded wood–polypropylene composites. Macromol. Mater. Eng. 2006, 291, 1226–1232. [Google Scholar] [CrossRef]
- Dikobe, D.G.; Luyt, A.S. Effect of poly (ethylene- co -glycidyl methacrylate) compatibilizer content on the morphology and physical properties of ethylene vinyl acetate–wood fiber composites. J. Appl. Polym. Sci. 2007, 104, 3206–3213. [Google Scholar] [CrossRef]
- Karmarkar, A.; Chauhan, S.S.; Modak, J.M.; Chanda, M. Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Compos. Part A 2007, 38, 227–233. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Ashori, A. Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym. Compos. 2008, 29, 569–573. [Google Scholar] [CrossRef]
- Sretenovic, A.; Müller, U.; Gindl, W. Mechanism of stress transfer in a single wood fibre-LDPE composite by means of electronic laser speckle interferometry. Compos. Part A 2006, 37, 1406–1412. [Google Scholar] [CrossRef]
- Yuan, H.; Nishiyama, Y.; Wada, M.; Kuga, S. Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 2006, 7, 696–700. [Google Scholar] [CrossRef]
- Bos, H.; Molenveld, K.; Teunissen, W.; van Wingerde, A.; van Delft, D. Compressive behaviour of unidirectional flax fibre reinforced composites. J. Mater. Sci. 2004, 39, 2159–2168. [Google Scholar] [CrossRef]
- Chen, H.L.; Porter, R.S. Composite of polyethylene and kenaf, a natural cellulose fiber. J. Appl. Polym. Sci. 1994, 54, 1781–1783. [Google Scholar] [CrossRef]
- Doan, T.-T.-L.; Gao, S.-L.; Mäder, E. Jute/polypropylene composites I. Effect of matrix modification. Compos. Sci. Technol. 2006, 66, 952–963. [Google Scholar] [CrossRef]
- Kalia, S. Preparation of flax-g-copolymer reinforced phenol-formaldehyde composites and evaluation of their physical and mechanical properties. Int. J. Plast. Technol. 2005, 9, 427–435. [Google Scholar]
- López Manchado, M.A.; Arroyo, M.; Biagiotti, J.; Kenny, J.M. Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J. Appl. Polym. Sci. 2003, 90, 2170–2178. [Google Scholar] [CrossRef]
- Nishino, T.; Hirao, K.; Kotera, M.; Nakamae, K.; Inagaki, H. Kenaf reinforced biodegradable composite. Compos. Sci. Technol. 2003, 63, 1281–1286. [Google Scholar] [CrossRef]
- Pan, P.; Zhu, B.; Dong, T.; Serizawa, S.; Iji, M.; Inoue, Y. Kenaf fiber/poly(ε-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. J. Appl. Polym. Sci. 2008, 107, 3512–3519. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Sahu, G.C.; Rana, P.K.; Das, A.K. Preparation, characterization, and biodegradability of jute-based natural fiber composite superabsorbents. Adv. Polym. Technol. 2005, 24, 208–214. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohanty, S.; Nayak, S.K. Mechanical, dynamic mechanical, and interfacial properties of sisal fiber-reinforced composite with epoxidized soybean oil-based epoxy matrix. Polym. Compos. 2018, 39, 2065–2072. [Google Scholar] [CrossRef]
- Sarkhel, G.; Choudhury, A. Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites. J. Appl. Polym. Sci. 2008, 108, 3442–3453. [Google Scholar] [CrossRef]
- Thygesen, A.; Daniel, G.; Lilholt, H.; Thomsen, A.B. Hemp fiber microstructure and use of fungal defibration to obtain fibers for composite materials. J. Nat. Fibers 2006, 2, 19–37. [Google Scholar] [CrossRef]
- Kalka, S.; Huber, T.; Steinberg, J.; Baronian, K.; Müssig, J.; Staiger, M. Biodegradability of all-cellulose composite laminates. Compos. Part A Appl. Sci. Manuf. 2014, 59, 37–44. [Google Scholar] [CrossRef]
- Li, J.; Nawaz, H.; Wu, J.; Zhang, J.; Wan, J.; Mi, Q.; Yu, J.; Zhang, J. All-cellulose composites based on the self-reinforced effect. Compos. Commun. 2018, 9, 42–53. [Google Scholar] [CrossRef]
- Spörl, J.; Batti, F.; Vocht, M.; Raab, R.; Müller, A.; Hermanutz, F.; Buchmeiser, M. Ionic liquid approach toward manufacture and full recycling of all-cellulose composites. Macromol. Mater. Eng. 2017, 303, 1700335. [Google Scholar] [CrossRef] [Green Version]
- Takashi, N.; Peijs, P. All-cellulose Composites. In Handbook of Green Materials; World Scientific: New York, NY, USA, 2014; pp. 201–216. [Google Scholar]
- Huber, T.; Müssig, J.; Curnow, O.; Pang, S.; Bickerton, S.; Staiger, M. A critical review of all-cellulose composites. J. Mater. Sci. 2012, 47, 1171–1186. [Google Scholar] [CrossRef]
- Oksman, K.; Mathew, A.P.; Bismarck, A.; Rojas, O.; Sain, M. Handbook of Green Materials: Processing Technologies, Properties and Applications; World Scientific and Engineering Academy and Society: Singapore, 2014; Volume 4, p. 1124. [Google Scholar]
- Soykeabkaew, N.; Nishino, T.; Peijs, T. All-cellulose composites of regenerated cellulose fibres by surface selective dissolution. Compos. Part A 2009, 40, 321–328. [Google Scholar] [CrossRef]
- Heijenrath, R.; Peijs, T. Natural-fibre-mat-reinforced thermoplastic composites based on flax fibres and polypropylene. Adv. Compos. Lett. 1996, 5, 096369359600500303. [Google Scholar] [CrossRef] [Green Version]
- Madsen, B.; Lilholt, H. Physical and mechanical properties of unidirectional plant fibre composites—An evaluation of the influence of porosity. Compos. Sci. Technol. 2003, 63, 1265–1272. [Google Scholar] [CrossRef]
- Liu, W.; Misra, M.; Askeland, P.; Drzal, L.T.; Mohanty, A.K. ‘Green’ composites from soy based plastic and pineapple leaf fiber: Fabrication and properties evaluation. Polymer 2005, 46, 2710–2721. [Google Scholar] [CrossRef]
- van de Weyenberg, I.; Chi Truong, T.; Vangrimde, B.; Verpoest, I. Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos. Part A 2006, 37, 1368–1376. [Google Scholar] [CrossRef]
- Brahim, S.B.; Cheikh, R.B. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos. Sci. Technol. 2007, 67, 140–147. [Google Scholar] [CrossRef]
- van den Oever, M.; Bos, H.; van Kemenade, M. Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl. Compos. Mater. 2000, 7, 387–402. [Google Scholar] [CrossRef]
- Luo, S.; Netravali, A.N. Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly(hydroxybutyrate-co-valerate) resin. Polym. Compos. 1999, 20, 367–378. [Google Scholar] [CrossRef]
- Oksman, K.; Wallström, L.; Berglund, L.A.; Filho, R.D.T. Morphology and mechanical properties of unidirectional sisal–epoxy composites. J. Appl. Polym. Sci. 2002, 84, 2358–2365. [Google Scholar] [CrossRef]
- Yousefi, H.; Nishino, T.; Faezipour, M.; Ebrahimi, G.; Shakeri, A. direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 2011, 12, 4080–4085. [Google Scholar] [CrossRef]
- Naghdi, T.; Yousefi, H.; Sharifi, A.R.; Golmohammadi, H. Nanopaper-Based Sensors. In Comprehensive Analytical Chemistry; Elsevier: New York, NY, USA, 2020. [Google Scholar]
- Guzman-Puyol, S.; Ceseracciu, L.; Tedeschi, G.; Marras, S.; Scarpellini, A.; Benítez, J.J.; Athanassiou, A.; Heredia-Guerrero, J.A. Transparent and robust all-cellulose nanocomposite packaging materials prepared in a mixture of trifluoroacetic acid and trifluoroacetic anhydride. Nanomaterials 2019, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Gindl, W.; Keckes, J. All-cellulose nanocomposite. Polymer 2005, 46, 10221–10225. [Google Scholar] [CrossRef]
- Huber, T.; Bickerton, S.; Müssig, J.; Pang, S.; Staiger, M. Solvent infusion processing of all-cellulose composite materials. Carbohydr. Polym. 2012, 90, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Soykeabkaew, N.; Arimoto, N.; Nishino, T.; Peijs, T. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Compos. Sci. Technol. 2008, 68, 2201–2207. [Google Scholar] [CrossRef] [Green Version]
- Haverhals, L.M.; Reichert, W.M.; De Long, H.C.; Trulove, P.C. Natural fiber welding. Macromol. Mater. Eng. 2010, 295, 425–430. [Google Scholar] [CrossRef]
- Singh, P.; Duarte, H.; Alves, L.; Antunes, F.; Moigne, N.L.; Dormanns, J.; Duchemin, B.; Staiger, M.P.; Medronho, B. From cellulose dissolution and regeneration to added value applications—Synergism between molecular understanding and material development. In Cellulose: Fundamental Aspects and Current Trends; Matheus, P., Ornaghi, H.L.J., Eds.; InTech: Rijeka, Croatia, 2015. [Google Scholar]
- Duchemin, B.; Newman, R.; Staiger, M. Structure–property relationship of all-cellulose composites. Compos. Sci. Technol. 2009, 69, 1225–1230. [Google Scholar] [CrossRef]
- Duchemin, B. Structure, Property and Processing Relationships of All-Cellulose Composites. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2008. [Google Scholar]
- Gindl-Altmutter, W.; Keckes, J.; Plackner, J.; Liebner, F.; Englund, K.; Laborie, M.-P. All-cellulose composites prepared from flax and lyocell fibres compared to epoxy–matrix composites. Compos. Sci. Technol. 2012, 72, 1304–1309. [Google Scholar] [CrossRef]
- Duchemin, B.; Mathew, A.P.; Oksman, K. All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride. Compos. Part A Appl. Sci. Manuf. 2009, 40, 2031–2037. [Google Scholar] [CrossRef]
- Abbott, A.; Bismarck, A. Self-reinforced cellulose nanocomposites. Cellulose 2010, 17, 779–791. [Google Scholar] [CrossRef]
- Pullawan, T.; Wilkinson, A.; Eichhorn, S. Orientation and deformation of wet-stretched all-cellulose nanocomposites. J. Mater. Sci. 2013, 48, 7847–7855. [Google Scholar] [CrossRef]
- Soykeabkaew, N.; Sian, C.; Gea, S.; Nishino, T.; Peijs, T. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 2009, 16, 435–444. [Google Scholar] [CrossRef]
- Gindl, W.; Schöberl, T.; Keckes, J. Structure and properties of a pulp fibre-reinforced composite with regenerated cellulose matrix. Appl. Phys. A 2006, 83, 19–22. [Google Scholar] [CrossRef]
- Nishino, T.; Arimoto, N. All-cellulose composite prepared by selective dissolving of fiber surface. Biomacromolecules 2007, 8, 2712–2716. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Soykeabkaew, N.; Xiuyuan, N.; Peijs, T. The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr. Polym. 2008, 71, 458–467. [Google Scholar] [CrossRef]
- Labidi, K.; Korhonen, O.; Zrida, M.; Hamzaoui, A.; Budtova, T. All-cellulose composites from alfa and wood fibers. Ind. Crop. Prod. 2019, 127, 135–141. [Google Scholar] [CrossRef]
- Shibata, M.; Teramoto, N.; Nakamura, T.; Saitoh, Y. All-cellulose and all-wood composites by partial dissolution of cotton fabric and wood in ionic liquid. Carbohydr. Polym. 2013, 98, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Huber, T.; Bickerton, S.; Müssig, J.; Pang, S.; Staiger, M.P. Flexural and impact properties of all-cellulose composite laminates. Compos. Sci. Technol. 2013, 88, 92–98. [Google Scholar] [CrossRef]
- Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior Solubility of Polysaccharides in Low Viscosity, Polar, and Halogen-Free 1,3-Dialkylimidazolium Formates. Biomacromolecules 2006, 7, 3295–3297. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem. 2006, 8, 325–327. [Google Scholar] [CrossRef]
- Dautzenberg, H. Macromolecular Solutions. Solvent-Property Relationships in Polymers. von Seymour, R.B., Stahl, G.A., Eds.; Pergamon Press New York, NY, USA, 1982. 233 S., $ 42.50. Acta Polym. 1983, 34, 764. [Google Scholar]
- Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol. 2009, 100, 2580–2587. [Google Scholar] [CrossRef]
- Medronho, B.; Lindman, B. Competing forces during cellulose dissolution: From solvents to mechanisms. Curr. Opin. Colloid Interface Sci. 2014, 19, 32–40. [Google Scholar] [CrossRef]
- Liu, H.; Sale, K.L.; Simmons, B.A.; Singh, S. Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J. Phys. Chem. B 2011, 115, 10251–10258. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.M.; Jiang, J. Cellulose dissolution and regeneration in ionic liquids: A computational perspective. Chem. Eng. Sci. 2015, 121, 180–189. [Google Scholar] [CrossRef]
- Isobe, N.; Kuga, S.; Kimura, S.; Wada, M. Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr. Polym. 2012, 89, 1298–1300. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Meng, Y.; Wang, B.; Zhu, W.; Pang, Z. Effect of antisolvents on the structure of regenerated cellulose: Development of an efficient regeneration process. Holzforschung 2020. [Google Scholar] [CrossRef]
- Wan, Y.; An, F.; Zhou, P.; Li, Y.; Liu, Y.; Lu, C.; Chen, H. Regenerated cellulose I from LiCl·DMAc solution. Chem. Commun. 2017, 53, 3595–3597. [Google Scholar] [CrossRef]
- Yu, P.; He, H.; Dufresne, A. A novel interpenetrating polymer network of natural rubber/regenerated cellulose made by simple co-precipitation. Mater. Lett. 2017, 205, 202–205. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, X.; Hao, M.; Huang, C.; Xue, Z.; Mu, T. Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydr. Polym. 2015, 117, 99–105. [Google Scholar] [CrossRef]
- Dadi, A.; Varanasi, S.; Schall, C. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 2006, 95, 904–910. [Google Scholar] [CrossRef]
- Ho, T.; Zimmermann, T.; Hauert, R.; Caseri, W. Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 2011, 18, 1391–1406. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Chen, L.; Li, X.; Xie, F. Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. Int. J. Biol. Macromol. 2018, 124, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhi, F.; Aid, T.; Koel, M. Ionic liquids as solvents for making composite materials from cellulose. Proc. Est. Acad. Sci. 2016, 65, 255. [Google Scholar] [CrossRef]
- Arevalo, R.; Picot, O.; Wilson, R.; Soykeabkaew, N.; Peijs, T. All-cellulose composites by partial dissolution of cotton fibres. J. Biobased Mater. Bioenergy 2010, 4, 129–138. [Google Scholar] [CrossRef]
- Brandt, A.; Gräsvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013, 15, 550–583. [Google Scholar] [CrossRef] [Green Version]
- Bledzki, A.K.; Fink, H.P.; Specht, K. Unidirectional hemp and flax EP- and PP-composites: Influence of defined fiber treatments. J. Appl. Polym. Sci. 2004, 93, 2150–2156. [Google Scholar] [CrossRef]
- Zhou, L.M.; Yeung, K.W.P.; Yuen, C.W.M. Effect of NaOH mercerization on the crosslinking of Ramie Yarn using 1,2,3,4-Butanetetracarboxylic acid. Text. Res. J. 2002, 72, 531–538. [Google Scholar] [CrossRef]
- Adak, B.; Mukhopadhyay, S. Effect of the dissolution time on the structure and properties of lyocell-fabric-based all-cellulose composite laminates. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Adak, B.; Mukhopadhyay, S. Effect of pressure on structure and properties of lyocell fabric-based all-cellulose composite laminates. J. Text. Inst. 2017, 108, 1010–1017. [Google Scholar] [CrossRef]
- Adak, B.; Mukhopadhyay, S. A comparative study on lyocell-fabric based all-cellulose composite laminates produced by different processes. Cellulose 2017, 24, 835–849. [Google Scholar] [CrossRef]
- Dormanns, J.W.; Weiler, F.; Schuermann, J.; Müssig, J.; Duchemin, B.J.C.; Staiger, M.P. Positive size and scale effects of all-cellulose composite laminates. Compos. Part A 2016, 85, 65–75. [Google Scholar] [CrossRef]
- Huber, T.; Pang, S.; Staiger, M.P. All-cellulose composite laminates. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1738–1745. [Google Scholar] [CrossRef]
- Li, D.S.; Liu, Z.Y.; Al-Haik, M.; Tehrani, M.; Murray, F.; Tannenbaum, R.; Garmestani, H. Magnetic alignment of cellulose nanowhiskers in an all-cellulose composite. Polym. Bull. 2010, 65, 635–642. [Google Scholar] [CrossRef]
- Shakeri, A.; Mathew, P.A.; Oksman, K. Self-reinforced nanocomposite by partial dissolution of cellulose microfibrils in ionic liquid. J. Compos. Mater. 2012, 46, 1305–1311. [Google Scholar] [CrossRef]
- Qi, H.; Cai, J.; Zhang, L.; Kuga, S. Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. Biomacromolecules 2009, 10, 1597–1602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yam, R.C.M.; Zhang, B.; Yang, Y.; Cheng, X.; Li, R.K.Y. Novel all-cellulose ecocomposites prepared in ionic liquids. Cellulose 2009, 16, 217–226. [Google Scholar] [CrossRef]
- Han, D.L.; Yan, L.F. Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydr. Polym. 2010, 79, 614–619. [Google Scholar] [CrossRef]
- Nilsson, H.; Galland, S.; Larsson, P.T.; Gamstedt, E.K.; Nishino, T.; Berglund, L.A.; Iversen, T. A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos. Sci. Technol. 2010, 70, 1704–1712. [Google Scholar] [CrossRef]
- Pullawan, T.; Wilkinson, A.N.; Eichhorn, S.J. Discrimination of matrix–fibre interactions in all-cellulose nanocomposites. Compos. Sci. Technol. 2010, 70, 2325–2330. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhou, B.; Li, H.S.; Li, Y.Q.; Ou, S.Y. Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr. Polym. 2011, 84, 383–389. [Google Scholar] [CrossRef]
- Magalhäes, W.L.E.; Cao, X.; Ramires, M.A.; Lucia, L.A. Novel all-cellulose composite displaying aligned cellulose nanofibers reinforced with cellulose nanocrystals. TAPPI 2011, 10, 19–25. [Google Scholar] [CrossRef]
- Wang, Y.X.; Chen, L.Y. Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr. Polym. 2011, 83, 1937–1946. [Google Scholar] [CrossRef]
- Yousefi, H.; Faezipour, M.; Nishino, T.; Shakeri, A.; Ebrahimi, G. All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polym. J. 2011, 43, 559–564. [Google Scholar] [CrossRef]
- Vallejos, M.E.; Peresin, M.S.; Rojas, O.J. All-cellulose composite fibers obtained by electrospinning dispersions of cellulose acetate and cellulose nanocrystals. J. Polym. Environ. 2012, 20, 1075–1083. [Google Scholar] [CrossRef]
- Pullawan, T.; Wilkinson, A.N.; Eichhorn, S.J. Influence of magnetic field alignment of cellulose whiskers on the mechanics of all-cellulose nanocomposites. Biomacromolecules 2012, 13, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Pullawan, T.; Wilkinson, A.N.; Zhang, L.N.; Eichhorn, S.J. Deformation micromechanics of all-cellulose nanocomposites: Comparing matrix and reinforcing components. Carbohydr. Polym. 2014, 100, 31–39. [Google Scholar] [CrossRef]
- Yang, Q.; Saito, T.; Berglund, L.; Isogai, A. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization. Nanoscale 2015, 7, 17957–17963. [Google Scholar] [CrossRef]
- Ghaderi, M.; Mousavi, M.; Yousefi, H.; Labbafi, M. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr. Polym. 2014, 104, 59–65. [Google Scholar] [CrossRef]
- Norain, F.; Salmah, H.; Mostapha, M. Properties of all-cellulose composite films from coconut shell powder and microcrystalline cellulose. Appl. Mech. Mater. 2015, 754–755, 39–43. [Google Scholar]
- Wei, X.; Wei, W.; Cui, Y.-H.; Lu, T.-J.; Jiang, M.; Zhou, Z.-W.; Wang, Y. All-cellulose composites with ultra-high mechanical properties prepared through using straw cellulose fiber. Rsc Adv. 2016, 6, 93428–93435. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, N.; Zhang, X.; Xu, L.; Wu, J.; Yu, J.; He, J.; Zhang, J. All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. Acs Sustain. Chem. Eng. 2016, 4, 4417–4423. [Google Scholar] [CrossRef]
- Vogel, A.G. Production of regenerated nanocomposite fibers based on cellulose and their use in all-cellulose composites. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, June 2017. [Google Scholar]
- Salleh, M.; Magniez, K.; Pang, S.; Dormanns, J.; Staiger, M. Parametric optimization of the processing of all-cellulose composite laminae. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 73–79. [Google Scholar]
- Tervahartiala, T.; Hildebrandt, N.; Piltonen, P.; Schabel, S.; Valkama, J. Potential of all-cellulose composites in corrugated board applications: Comparison of chemical pulp raw materials. Packag. Technol. Sci. 2018, 31. [Google Scholar] [CrossRef]
- Gea, S.; Panindia, N.; Piliang, A.; Sembiring, A.; Hutapea, Y. All-cellulose composite isolated from oil palm empty fruit bunch. J. Phys. Conf. Ser. 2018, 1116, 042013. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Rajini, N.; Rajulu, A.V.; Siengchin, S. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers. Int. J. Biol. Macromol. 2018, 112, 1310–1315. [Google Scholar]
- Adak, B.; Mukhopadhyay, S. All-cellulose composite laminates with low moisture and water sensitivity. Polymer 2018, 141, 1310–1315. [Google Scholar] [CrossRef]
- Shah, D.U. Natural fibre composites: Comprehensive Ashby-type materials selection charts. Mater. Des. 2014, 62, 21–31. [Google Scholar] [CrossRef]
- Mathew, P.A.; Oksman, K.; Pierron, D.; Harmand, M.-F. Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr. Polym. 2012, 87, 2291–2298. [Google Scholar] [CrossRef]
- He, X.; Xiao, Q.; Lu, C.; Wang, Y.; Zhang, X.; Zhao, J.; Zhang, W.; Zhang, X.; Deng, Y. Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: Scaffold for tissue engineering. Biomacromolecules 2014, 15, 618–627. [Google Scholar] [CrossRef]
- Kim, J.; Yun, S. Discovery of Cellulose as a Smart Material. Macromolecules 2006, 39, 4202–4206. [Google Scholar] [CrossRef]
- Nakagaito, A.; Nogi, M.; Yano, H. Displays from transparent film of natural nanofibers. Mrs Bull. 2010, 35, 214–218. [Google Scholar] [CrossRef]
- Khan, A.; Abas, Z.; Kim, H.S.; Kim, J. Recent progress on cellulose-based electro-active paper, its hybrid nanocomposites and applications. Sensors 2016, 16, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondeson, D.; Syre, P.; Oksman, K. All cellulose nanocomposites produced by extrusion. J. Biobased Mater. Bioenergy 2007, 1, 367–371. [Google Scholar] [CrossRef]
- Dewangan, B.; Marathe, U. Nanocomposites for Food Packaging Applications. In Novel Applications in Polymers and Waste Management; CRC Press: Boca Raton, FL, USA, 2018; pp. 137–170. [Google Scholar]
- Hubbe, M.; Ferrer, A.; Tyagi, P.; Yin, Y.; Salas, C.; Pal, L.; Rojas, O. Nanocellulose in thin films, coatings, and plies for packaging applications: A review. BioResources 2017, 12, 2143–2233. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Mascheroni, E.; Piergiovanni, L. The potential of nanocellulose in the packaging field: A review. Packag. Technol. Sci. 2015, 28. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Schirp, A.; Wolcott, M. Influence of fungal decay and moisture absorption on mechanical properties of extruded wood-plastic composites. Wood Fiber Sci. 2005, 37, 643–652. [Google Scholar]
- Bisanda, E.; Ansell, M.P. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos. Sci. Technol. 1991, 41, 165–178. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, M.; Verma, A. Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym. Compos. 1996, 17, 910–918. [Google Scholar] [CrossRef]
- Yousefi, H.; Nishino, T.; Shakeri, A.; Faezipour, M.; Ebrahimi, G.; Kotera, M. Water-repellent all-cellulose nanocomposite using silane coupling treatment. J. Adhes. Sci. Technol. 2012, 27, 1–11. [Google Scholar]
Biodegradable Polymers | |
---|---|
Natural | Synthetic |
Polysaccharides: Starch, Cellulose, Chitin Proteins: Collagen/Gelatin, Casein, Albumin, Fibrinogen, Silks Polyesters: Polyhydroxyalkanoates Other polymers: Lignin, Lipids, Shellac, Natural Rubber | Poly(amides) Poly(anhydrides) Poly(amide-enamines) Poly(vinyl alcohol) Poly(vinyl acetate) Polyesters: Poly(glycolic acid), Poly(lactic acid), Poly(caprolactone), Poly(orthoesters) Poly(ethylene oxides) Poly(phosphazenes) |
Reinforcement | Matrix | Solvent | Anti-Solvent | Process | Mechanical Properties | Ref. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ramie | Kraft pulp from coniferous trees | LiCl/DMAc | Methanol | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [20] | ||||||||||
45 | 480 | ||||||||||||||||
Microcrystalline cellulose | - | LiCl/DMAc | Distilled water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [77] | ||||||||||
15 | 243 | ||||||||||||||||
Beech pulp fibers | - | LiCl/DMAc | Distilled water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [89] | ||||||||||
12.2 | 154 | ||||||||||||||||
Filter paper | - | LiCl/DMAc | Methanol | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [90] | ||||||||||
8.2 | 211 | ||||||||||||||||
Ramie | Ramie | LiCl/DMAc | Methanol | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [91] | ||||||||||
25 | 540 | ||||||||||||||||
Ramie | - | LiCl/DMAc | Methanol | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [79] | ||||||||||
28 | 460 | ||||||||||||||||
Micro-fibrillated cellulose and filter paper | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride | Water | PD | 10.8 | 124 | [85] | ||||||||||
Native cellulose nanowhiskers | - | NaOH/urea | Distilled water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [122] | ||||||||||
5 | 124 | ||||||||||||||||
Microcrystalline cellulose | - | LiCl/DMAc | Distilled water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [82] | ||||||||||
6.9 | 105 | ||||||||||||||||
Lyocell Bocell | - | N-methyl morpholine N-oxide (NMMO) | Methanol | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [65] | ||||||||||
Lyocell: 15 Bocell: 23 | 350 910 | ||||||||||||||||
Bacterial cellulose | - | LiCl/DMAc | Methanol | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [88] | ||||||||||
18 | 410 | ||||||||||||||||
Rice husk | Filter paper | Ionic liquid: 1-butyl-3-methylimidazolium chloride | Water | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [123] | ||||||||||
17 | 89 | ||||||||||||||||
Microcrystalline cellulose | - | DMAc/LiCl | Distilled water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [86] | ||||||||||
1.5 | 65 | ||||||||||||||||
Filter paper | - | PEG/NaOH aqueous solution | Water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [124] | ||||||||||
0.75 | 74 | ||||||||||||||||
Eucalyptus pulp | Softwood dissolving | - | Water | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [125] | ||||||||||
13 | 76 | ||||||||||||||||
Cellulose nanowhiskers | Wood pulp | - | Water | CIM | Storage modulus at 20 °C (GPa) 4.9 | [120] | |||||||||||
Cellulose nanowhiskers | Microcrystalline cellulose (MCC) | LiCl/DMAc | Water | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [126] | ||||||||||
4.8 | 128.4 | ||||||||||||||||
Nanocrystalline cellulose (NCC) | Pretreated microcrystalline cellulose (PMCC) | Ionic liquid: 1-(2-hydroxylethyl)-3-methyl imidazolium chloride (HeMIMCI) | Water | CIM | Young’s modulus (GPa) | Tensile strength (MPa) | [127] | ||||||||||
3.7 | 52 | ||||||||||||||||
Cellulose nanocrystal | Dissolved eucalyptus pulp | NMMO | Water | Co-electrospinning | Young’s modulus (GPa) | Tensile strength (MPa) | [128] | ||||||||||
5.6 | 140 | ||||||||||||||||
Cellulose nanowhiskers | Cotton linter pulp | NaOH/urea | Water | Rapid thermal-induced phase separation | - | [129] | |||||||||||
Nanofiber of canola | - | LiCl/DMAc | Methanol | PD | Tensile strength (MPa) 164 | [130] | |||||||||||
Canola straw | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride (BMIMCl) | Methanol | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | Strain at break (%) | [74] | |||||||||
17.5 | 188 | 11.8 | |||||||||||||||
Cellulose nanocrystals | cellulose acetate | Acetone and DMAc | KOH solution in ethanol | Electrospinning | - | [131] | |||||||||||
Microfibrillated cellulose (MFC) | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride (BMIMCl) | Water | PD | Storage modulus at 40 °C (GPa) | [121] | |||||||||||
1.1 | |||||||||||||||||
Linen flax fiber Rayon | - | Ionic liquid: 1-butyl-3-methylimidazolium acetate (BMIMAc) | Distilled water | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [119] | ||||||||||
Linen: 0.86 Rayon: 2.45 | 46 70.16 | ||||||||||||||||
Cordenka | - | Ionic liquid: 1-Butyl-3-methylimidazolium acetate (BMIMAc) | Distilled water | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [78] | ||||||||||
4 | 92 | ||||||||||||||||
Lyocell Flax | - | Ionic liquid: 1-butyl-3-methyl-imidazolium-chloride | Distilled water | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [84] | ||||||||||
7.2 4.6 | 78 34 | ||||||||||||||||
Cellulose nanowhiskers | Microcrystalline cellulose | LiCl/DMAc | Water | CIM | Young’s Modulus (GPa) | Tensile strength (MPa) | [132] | ||||||||||
12.5 | 175.6 | ||||||||||||||||
Cordenka | - | Ionic liquid: 1-butyl-3-methylimidazolium acetate (BMIMAc) | Distilled water | PD | Impact strength (kN/mm2) | Flexural modulus (GPa) | Flexural strength (MPa) | [94] | |||||||||
1.96 | 3.8 | 140 | |||||||||||||||
Cellulose nanowhiskers | Microcrystalline cellulose | LiCl/DMAc | Distilled water | CIM | Young’s modulus (GPa) | Stress at failure (MPa) | [87] | ||||||||||
13.6 | 170 | ||||||||||||||||
6.12 | 53 | ||||||||||||||||
Cotton fabric | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride (BMIMCl) | Acetonitrile | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [93] | ||||||||||
0.05 | 20 | ||||||||||||||||
Tunicate cellulose nanowhiskers | Microcrystalline cellulose | LiCl/DMAc | Water | CIM | Young’s Modulus (GPa) | Tensile strength (MPa) | [133] | ||||||||||
NaOH/urea | LiCl/DMAc system: 11.8 | 165.4 | |||||||||||||||
NaOH/urea system: 9.8 | 137.1 | ||||||||||||||||
Cotton linters cellulose | Softwood bleached kraft pulp | NaOH/urea/H2O | H2SO4 | CIM | Young’s Modulus (GPa) | Tensile strength (MPa) | [134] | ||||||||||
6.2 | 167 | ||||||||||||||||
Sugarcane bagasse nanofibers | - | LiCl/DMAc | Ethanol | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | Toughness (m N m−3) | [135] | |||||||||
12.8 | 140 | 8.07 | |||||||||||||||
Coconut Shell Powder and Microcrystalline Cellulose | - | LiCl/DMAc | Methanol | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [136] | ||||||||||
0.14 | 12 | ||||||||||||||||
Straw cellulose fiber | Microcrystalline cellulose | LiCl/DMAc | Distilled water | CIM | Tensile strength (MPa) | Flexural modulus (GPa) | Flexural strength (MPa) | [137] | |||||||||
650 | 4 | 140 | |||||||||||||||
Microcrystalline cellulose (MCC) | - | Ionic liquid: 1-ally-3-methylimidazolium chloride (AMIMCl) | Water | PD | Young’s modulus (GPa) | Tensile strength (MPa) | [138] | ||||||||||
8.1 | 135 | ||||||||||||||||
Cellulose nanocrystals | - | LiCl/DMAc | Distilled water and methanol | PD | -- | [139] | |||||||||||
Halloysite nanotubes | LiCl/DMAc | Distilled water and methanol | Young´s modulus (GPa) | Tensile strength (MPa) | Strain at break (%) | ||||||||||||
5.6 | 126.2 | 11.4 | |||||||||||||||
Rayon fiber textile | - | Ionic liquid: 1-butyl-3-methylimidazolium acetate (BMIMAc) | Distilled water | PD | Young´s modulus (GPa) 7.3 | Tensile strength (MPa) 77.7 | [140] | ||||||||||
Pulp from paper making | - | Aqueous zinc chloride (ZnCl2) solvent | Tap water | PD | Young’s Modulus (GPa) | Tensile strength (MPa) | [141] | ||||||||||
5.5 | 64.9 | ||||||||||||||||
Cellulose extracted from empty bunch of palm oil | - | LiCl/DMAc | Water | PD | Elongation at break (%) | Young’s Modulus (GPa) | Tensile strength (MPa) | [142] | |||||||||
3.07 | 3.56 | 109 | |||||||||||||||
Cellulose fibrils extracted from native African Napier grass | Cotton | LiOH/urea | Ethyl alcohol | CIM | Elongation at break (%) | Tensile stress (MPa) | [143] | ||||||||||
12.7–8.6 | 49.7–76.8 | ||||||||||||||||
Lyocell | - | Ionic liquid: 1-butyl-3-methyl imidazolium chloride | Distilled water | PD | Young’s Modulus (GPa) 1.7 | Tensile stress (MPa) 45 | [144] | ||||||||||
Cotton | - | LiCl/DMAc | Water | PD | Young’s Modulus (GPa) | Tensile stress (MPa) | [111] | ||||||||||
5.5 | 144 | ||||||||||||||||
Alfa fibers | Alfa pulp Wood pulp | NaOH/water | Water | CIM | Young’s Modulus (GPa) | Tensile stress (MPa) | [92] | ||||||||||
Alfa ACC = 3.8 Wood ACC = 4.2 | 16 13.9 | ||||||||||||||||
Lyocell | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride (BMIMCl) | Water | PD | Young’s Modulus (GPa) | Tensile stress (MPa) | Flexural modulus (GPa) | Flexural strength (MPa) | [116] | ||||||||
1.8 | 44.2 | 0.96 | 48.9 | ||||||||||||||
Lyocell | - | Ionic liquid: 1-butyl-3-methylimidazolium chloride | Water | PD | Young’s Modulus (GPa) | Tensile stress (MPa) | Flexural modulus (GPa) | Flexural strength (MPa) | [117] | ||||||||
4.2 | 102.6 | 11 | 178.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghaei, B.; Skrifvars, M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules 2020, 25, 2836. https://doi.org/10.3390/molecules25122836
Baghaei B, Skrifvars M. All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules. 2020; 25(12):2836. https://doi.org/10.3390/molecules25122836
Chicago/Turabian StyleBaghaei, Behnaz, and Mikael Skrifvars. 2020. "All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications" Molecules 25, no. 12: 2836. https://doi.org/10.3390/molecules25122836
APA StyleBaghaei, B., & Skrifvars, M. (2020). All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules, 25(12), 2836. https://doi.org/10.3390/molecules25122836