Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Liposomes
4.3. Electrophoretic Mobility Measurements; Zeta Potential and Surface Charge Density Determination
4.4. Particle Size and Polysipersity Index Determination
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lasic, D.D. Liposomes: From Physics to Applications; Elsevier: Amsterdam, The Netherlands, 1993; pp. 16–20. [Google Scholar]
- Jendrasiak, G.L. Halide interaction with phospholipids: Proton magnetic resonance studies. Chem. Phys. Lipids 1972, 9, 133–146. [Google Scholar] [CrossRef]
- Loshchilova, E.; Karvaly, B. Laser Raman studies of molecular interactions with phosphatidylcholine multilayers. II. Effects of mono- and divalent ions on bilayer structure. Biochim. Biophys. Acta 1978, 514, 274–285. [Google Scholar] [CrossRef]
- Petelska, A.D.; Figaszewski, Z.A. The equilibria between monovalent ions and phosphatidylcholine monolayer at the air/water interface. J. Membr. Biol. 2013, 246, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naumowicz, M.; Figaszewski, Z.A. The effect of pH on the electrical capacitance of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane. J. Membr. Biol. 2014, 247, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Naumowicz, M.; Figaszewski, Z.A. Chronopotentiometry insight into acid-base equilibria between phosphatidylcholine bilayer and ions from electrolyte solution. J. Electrochem. Soc. 2014, 161, H114–H120. [Google Scholar] [CrossRef]
- Naumowicz, M. Cyclic voltammetry and chronoamperometry techniques in description of the surface-active phospholipid bilayer relative to acid-base equilibria. J. Electrochem. Soc. 2016, 163, H750–H756. [Google Scholar] [CrossRef]
- Tatulian, S.A. Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. Eur. J. Biochem. 1987, 170, 413–420. [Google Scholar] [CrossRef]
- Kotynska, J.; Dobrzynska, I.; Figaszewski, Z.A. Association of alkali metal cations with phosphatidylcholine liposomal membrane surface. Eur. Biophys. J. 2017, 46, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Kotyńska, J.; Figaszewski, Z.A. Binding of trivalent metal ions (Al3+, In3+, La3+) with phosphatidylcholine liposomal membranes investigated by microelectrophoresis. Eur. Phys. J. E 2018, 41, 70. [Google Scholar] [CrossRef]
- Böckmann, R.A.; Hac, A.; Heimburg, T.; Grubmüller, H. Effect of sodium chloride on a lipid bilayer. Biophys. J. 2003, 85, 1647–1655. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.N.; Nanda, H.; Petrache, H.I.; Woolf, T.B. Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts. Molecular Dynamics Simulations. Biophys. J. 2004, 86, 3772–3782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vácha, R.; Siu, S.W.; Petrov, M.; Böckmann, R.A.; Barucha-Kraszewska, J.; Jurkiewicz, P.; Hof, M.; Berkowitz, M.L.; Jungwirth, P. Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A 2009, 113, 7235–7243. [Google Scholar] [CrossRef] [PubMed]
- Hauser, H.; Hinckley, C.C.; Krebbs, J.; Levine, B.A.; Phillips, M.C.; Williams, R.J.P. The interaction of ions with phosphatidylcholine bilayers. Biochim. Biophys. Acta 1977, 468, 364–377. [Google Scholar] [CrossRef]
- Lis, L.J.; Lis, W.T.; Parsegian, V.A.; Rand, R.P. Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry 1981, 20, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Petelska, A.D.; Figaszewski, Z.A. The equilibria of lipid—K+ in monolayer at the air/water interface. J. Membr. Biol. 2011, 244, 61–66. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, S.; Bruder, A.; Chen, S.; Moser, C. Chaotropic anions and the surface potential of bilayer membranes. Biochim. Biophys. Acta 1975, 394, 304–313. [Google Scholar] [CrossRef]
- Cunningham, B.A.; Lis, L.J.; Quinn, P.J. The influence of monovalent anions on dipalmitoylphosphatidylcholine bilayer phase transitions: A time resolved X-Ray diffraction study. Mol. Cryst. Liq. Cryst. 1986, 141, 361–367. [Google Scholar] [CrossRef]
- Bartucci, R.; Sportelli, L. Spin label EPR study of the effects of monovalent cations, anions, and chaotropics on DPPC multilayers. Biochim. Biophys. Acta 1994, 1195, 229–236. [Google Scholar] [CrossRef]
- Clarke, R.J.; Lüpfert, C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: A basis for the Hofmeister effect. Biophys. J. 1999, 76, 2614–2624. [Google Scholar] [CrossRef] [Green Version]
- Przyczyna, A.; Rozycka-Roszak, B.; Langer, M. The effect of selected anions on dipalmitoylphosphatidylcholine phase transitions. Z. Nat. 2002, 57, 712–716. [Google Scholar] [CrossRef]
- Dobrzyńska, I.; Kotyńska, J.; Figaszewski, Z. Changes in electrical charge of phosphatidylcholine and phosphatidylserine liposomal membranes caused by adsorption of monovalent ions. Chem. Anal. 2007, 52, 931–944. [Google Scholar]
- Petelska, A.D.; Kotyńska, J.; Naumowicz, M.; Figaszewski, Z.A. Equilibria between cell membranes and electrolyte solution: Effect of fatal accidental hypothermia. J. Membr. Biol. 2016, 249, 375–380. [Google Scholar] [CrossRef]
- Kotyńska, J.; Dobrzyńska, I.; Figaszewski, Z. Effect of monovalent ion adsorption on the electric charge of phosphatidylcholine—Decylamine liposomal membranes. J. Bioenerg. Biomembr. 2008, 40, 637–641. [Google Scholar] [CrossRef]
- Alexander, A.E.; Johnson, P. Colloid Science; Clarendon Press: Oxford, UK, 1949; pp. 30–79. [Google Scholar]
- Dołowy, K.; Szewczyk, A.; Pikuła, S. Biological Membranes; Śląsk Katowice: Warsaw, Poland, 2003; pp. 20–35. [Google Scholar]
- Klasczyk, B.; Knecht, V.; Lipowsky, R.; Dimova, R. Interactions of alkali metal chlorides with phosphatidylcholine vesicles. Langmuir 2010, 26, 18951–18958. [Google Scholar] [CrossRef]
- Aroti, A.; Leontidis, E.; Dubois, M.; Zemby, T. Effects of Monovalent Anions of the Hofmeister Series on DPPC Lipid Bilayers Part I: Swelling and In-Plane Equations of State. Biophys. J. 2007, 93, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- House, J.E. Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Sachs, J.N.; Woolf, T.B. Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers. Molecular dynamics simulations. J. Am. Chem. Soc. 2003, 125, 8742–8743. [Google Scholar] [CrossRef]
- Ohshima, H.; Healy, T.W.; White, L.R. Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J. Colloid Interface Sci. 1982, 90, 17–26. [Google Scholar] [CrossRef]
- Chibowski, E.; Szczes, A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption 2016, 22, 755–765. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Electrolyte | Liposome Size ± SD * (nm) | % Intensity | PDI | Zeta Potential (mV) |
---|---|---|---|---|
NaCl | 215.5 ± 25.86 | 85 | 0.404 | −5.73 |
50.70 ± 5.46 | 15 | |||
NaBr | 198.7 ± 18.78 | 94.7 | 0.431 | −6.33 |
30.34 ± 2.23 | 5.3 | |||
NaNO3 | 189.6 ± 19.85 | 93.9 | 0.532 | −8.43 |
30.04 ± 2.19 | 6.1 | |||
NaI | 163.0 ± 46.55 | 88.8 | 0.281 | −10.27 |
38.29 ± 6.62 | 11.2 |
Association Constants [m3 mol−1] | ||||
---|---|---|---|---|
Electrolyte | KANa | KAH | KBOH | KBX |
(10−1 m3 mol−1) | (102 m3 mol−1) | (109 m3 mol−1) | (10−1 m3 mol−1) | |
NaCl [22] | 2.30 | 7.17 | 3.35 | 0.76 |
NaBr | 1.97 | 2.64 | 3.54 | 1.33 |
NaNO3 | 1.51 | 0.47 | 5.99 | 1.85 |
NaI | 1.12 | 0.13 | 17.3 | 3.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotyńska, J.; Naumowicz, M. Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules 2020, 25, 132. https://doi.org/10.3390/molecules25010132
Kotyńska J, Naumowicz M. Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules. 2020; 25(1):132. https://doi.org/10.3390/molecules25010132
Chicago/Turabian StyleKotyńska, Joanna, and Monika Naumowicz. 2020. "Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density" Molecules 25, no. 1: 132. https://doi.org/10.3390/molecules25010132
APA StyleKotyńska, J., & Naumowicz, M. (2020). Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules, 25(1), 132. https://doi.org/10.3390/molecules25010132