Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density
Abstract
1. Introduction
2. Theory
3. Results and Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Liposomes
4.3. Electrophoretic Mobility Measurements; Zeta Potential and Surface Charge Density Determination
4.4. Particle Size and Polysipersity Index Determination
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lasic, D.D. Liposomes: From Physics to Applications; Elsevier: Amsterdam, The Netherlands, 1993; pp. 16–20. [Google Scholar]
- Jendrasiak, G.L. Halide interaction with phospholipids: Proton magnetic resonance studies. Chem. Phys. Lipids 1972, 9, 133–146. [Google Scholar] [CrossRef]
- Loshchilova, E.; Karvaly, B. Laser Raman studies of molecular interactions with phosphatidylcholine multilayers. II. Effects of mono- and divalent ions on bilayer structure. Biochim. Biophys. Acta 1978, 514, 274–285. [Google Scholar] [CrossRef]
- Petelska, A.D.; Figaszewski, Z.A. The equilibria between monovalent ions and phosphatidylcholine monolayer at the air/water interface. J. Membr. Biol. 2013, 246, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Naumowicz, M.; Figaszewski, Z.A. The effect of pH on the electrical capacitance of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane. J. Membr. Biol. 2014, 247, 361–369. [Google Scholar] [CrossRef]
- Naumowicz, M.; Figaszewski, Z.A. Chronopotentiometry insight into acid-base equilibria between phosphatidylcholine bilayer and ions from electrolyte solution. J. Electrochem. Soc. 2014, 161, H114–H120. [Google Scholar] [CrossRef]
- Naumowicz, M. Cyclic voltammetry and chronoamperometry techniques in description of the surface-active phospholipid bilayer relative to acid-base equilibria. J. Electrochem. Soc. 2016, 163, H750–H756. [Google Scholar] [CrossRef]
- Tatulian, S.A. Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. Eur. J. Biochem. 1987, 170, 413–420. [Google Scholar] [CrossRef]
- Kotynska, J.; Dobrzynska, I.; Figaszewski, Z.A. Association of alkali metal cations with phosphatidylcholine liposomal membrane surface. Eur. Biophys. J. 2017, 46, 149–155. [Google Scholar] [CrossRef]
- Kotyńska, J.; Figaszewski, Z.A. Binding of trivalent metal ions (Al3+, In3+, La3+) with phosphatidylcholine liposomal membranes investigated by microelectrophoresis. Eur. Phys. J. E 2018, 41, 70. [Google Scholar] [CrossRef]
- Böckmann, R.A.; Hac, A.; Heimburg, T.; Grubmüller, H. Effect of sodium chloride on a lipid bilayer. Biophys. J. 2003, 85, 1647–1655. [Google Scholar] [CrossRef]
- Sachs, J.N.; Nanda, H.; Petrache, H.I.; Woolf, T.B. Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts. Molecular Dynamics Simulations. Biophys. J. 2004, 86, 3772–3782. [Google Scholar] [CrossRef] [PubMed]
- Vácha, R.; Siu, S.W.; Petrov, M.; Böckmann, R.A.; Barucha-Kraszewska, J.; Jurkiewicz, P.; Hof, M.; Berkowitz, M.L.; Jungwirth, P. Effects of alkali cations and halide anions on the DOPC lipid membrane. J. Phys. Chem. A 2009, 113, 7235–7243. [Google Scholar] [CrossRef] [PubMed]
- Hauser, H.; Hinckley, C.C.; Krebbs, J.; Levine, B.A.; Phillips, M.C.; Williams, R.J.P. The interaction of ions with phosphatidylcholine bilayers. Biochim. Biophys. Acta 1977, 468, 364–377. [Google Scholar] [CrossRef]
- Lis, L.J.; Lis, W.T.; Parsegian, V.A.; Rand, R.P. Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry 1981, 20, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Petelska, A.D.; Figaszewski, Z.A. The equilibria of lipid—K+ in monolayer at the air/water interface. J. Membr. Biol. 2011, 244, 61–66. [Google Scholar] [CrossRef]
- McLaughlin, S.; Bruder, A.; Chen, S.; Moser, C. Chaotropic anions and the surface potential of bilayer membranes. Biochim. Biophys. Acta 1975, 394, 304–313. [Google Scholar] [CrossRef]
- Cunningham, B.A.; Lis, L.J.; Quinn, P.J. The influence of monovalent anions on dipalmitoylphosphatidylcholine bilayer phase transitions: A time resolved X-Ray diffraction study. Mol. Cryst. Liq. Cryst. 1986, 141, 361–367. [Google Scholar] [CrossRef]
- Bartucci, R.; Sportelli, L. Spin label EPR study of the effects of monovalent cations, anions, and chaotropics on DPPC multilayers. Biochim. Biophys. Acta 1994, 1195, 229–236. [Google Scholar] [CrossRef]
- Clarke, R.J.; Lüpfert, C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: A basis for the Hofmeister effect. Biophys. J. 1999, 76, 2614–2624. [Google Scholar] [CrossRef]
- Przyczyna, A.; Rozycka-Roszak, B.; Langer, M. The effect of selected anions on dipalmitoylphosphatidylcholine phase transitions. Z. Nat. 2002, 57, 712–716. [Google Scholar] [CrossRef]
- Dobrzyńska, I.; Kotyńska, J.; Figaszewski, Z. Changes in electrical charge of phosphatidylcholine and phosphatidylserine liposomal membranes caused by adsorption of monovalent ions. Chem. Anal. 2007, 52, 931–944. [Google Scholar]
- Petelska, A.D.; Kotyńska, J.; Naumowicz, M.; Figaszewski, Z.A. Equilibria between cell membranes and electrolyte solution: Effect of fatal accidental hypothermia. J. Membr. Biol. 2016, 249, 375–380. [Google Scholar] [CrossRef]
- Kotyńska, J.; Dobrzyńska, I.; Figaszewski, Z. Effect of monovalent ion adsorption on the electric charge of phosphatidylcholine—Decylamine liposomal membranes. J. Bioenerg. Biomembr. 2008, 40, 637–641. [Google Scholar] [CrossRef]
- Alexander, A.E.; Johnson, P. Colloid Science; Clarendon Press: Oxford, UK, 1949; pp. 30–79. [Google Scholar]
- Dołowy, K.; Szewczyk, A.; Pikuła, S. Biological Membranes; Śląsk Katowice: Warsaw, Poland, 2003; pp. 20–35. [Google Scholar]
- Klasczyk, B.; Knecht, V.; Lipowsky, R.; Dimova, R. Interactions of alkali metal chlorides with phosphatidylcholine vesicles. Langmuir 2010, 26, 18951–18958. [Google Scholar] [CrossRef]
- Aroti, A.; Leontidis, E.; Dubois, M.; Zemby, T. Effects of Monovalent Anions of the Hofmeister Series on DPPC Lipid Bilayers Part I: Swelling and In-Plane Equations of State. Biophys. J. 2007, 93, 1580–1590. [Google Scholar] [CrossRef]
- House, J.E. Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Sachs, J.N.; Woolf, T.B. Understanding the Hofmeister effect in interactions between chaotropic anions and lipid bilayers. Molecular dynamics simulations. J. Am. Chem. Soc. 2003, 125, 8742–8743. [Google Scholar] [CrossRef]
- Ohshima, H.; Healy, T.W.; White, L.R. Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J. Colloid Interface Sci. 1982, 90, 17–26. [Google Scholar] [CrossRef]
- Chibowski, E.; Szczes, A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption 2016, 22, 755–765. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Electrolyte | Liposome Size ± SD * (nm) | % Intensity | PDI | Zeta Potential (mV) |
---|---|---|---|---|
NaCl | 215.5 ± 25.86 | 85 | 0.404 | −5.73 |
50.70 ± 5.46 | 15 | |||
NaBr | 198.7 ± 18.78 | 94.7 | 0.431 | −6.33 |
30.34 ± 2.23 | 5.3 | |||
NaNO3 | 189.6 ± 19.85 | 93.9 | 0.532 | −8.43 |
30.04 ± 2.19 | 6.1 | |||
NaI | 163.0 ± 46.55 | 88.8 | 0.281 | −10.27 |
38.29 ± 6.62 | 11.2 |
Association Constants [m3 mol−1] | ||||
---|---|---|---|---|
Electrolyte | KANa | KAH | KBOH | KBX |
(10−1 m3 mol−1) | (102 m3 mol−1) | (109 m3 mol−1) | (10−1 m3 mol−1) | |
NaCl [22] | 2.30 | 7.17 | 3.35 | 0.76 |
NaBr | 1.97 | 2.64 | 3.54 | 1.33 |
NaNO3 | 1.51 | 0.47 | 5.99 | 1.85 |
NaI | 1.12 | 0.13 | 17.3 | 3.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotyńska, J.; Naumowicz, M. Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules 2020, 25, 132. https://doi.org/10.3390/molecules25010132
Kotyńska J, Naumowicz M. Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules. 2020; 25(1):132. https://doi.org/10.3390/molecules25010132
Chicago/Turabian StyleKotyńska, Joanna, and Monika Naumowicz. 2020. "Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density" Molecules 25, no. 1: 132. https://doi.org/10.3390/molecules25010132
APA StyleKotyńska, J., & Naumowicz, M. (2020). Theoretical Considerations and the Microelectrophoresis Experiment on the Influence of Selected Chaotropic Anions on Phosphatidylcholine Membrane Surface Charge Density. Molecules, 25(1), 132. https://doi.org/10.3390/molecules25010132