Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.1.1. Synthesis of 1,2,4-Oxadiazoles
2.1.2. Synthesis of Indolizines
2.2. Virtual Screening
2.2.1. EIIP Filtering
2.2.2. 3D QSAR Filtering
2.2.3. Arginase Docking
2.2.4. Anti-Target Interaction Matrix
2.2.5. In vitro Evaluation of Anti-Leishmanial Activity
3. Discussion
4. Materials and Methods
4.1. Chemistry and Physico-Chemical Analyses
4.1.1. General Procedure for the Automated Synthesis of Compounds 1–5:
4.1.2. General Procedure for the Automated Synthesis of Compounds 6 and 7:
4.1.3. Procedure for the Synthesis of Compound 8:
4.1.4. General Procedure for the Synthesis of Compounds 11–13:
4.2. Ligands
4.3. Virtual Screening
4.3.1. EIIP/AQVN
4.3.2. 3D QSAR
4.4. Arginase
4.5. Anti-Targets
4.6. Biological Evaluation
4.6.1. Cultures for Parasites and Cells
4.6.2. Macrophage
4.6.3. In Vitro Anti-Leishmanial Compound Testing on Axenic and Intramacrophage Amastigotes:
4.6.4. Cytotoxicity Tests
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO, Leishmaniasis: Situation and Trends. World Health Organization, 2017. Available online: https://www.who.int/gho/neglected_diseases/leishmaniasis/en/ (accessed on 19 February 2019).
- WHO Fact Sheet. 2018. Available online: http://www.who.int/en/news-room/fact-sheets/detail/leishmaniasis (accessed on 19 February 2019).
- Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Machado-Silva, A.; Guimarães, P.P.; Tavares, C.A.; Sinisterra, R.D. New perspectives for leishmaniasis chemotherapy over current anti-leishmanial drugs: A patent landscape. Expert Opin. Ther. Pat. 2015, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, R.; Chen, Y.P. Potential therapeutic targets and the role of technology in developing novel antileishmanial drugs. Drug Discov. Today 2015, 20, 958–968. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, J.; Guedes, C.; Petersen, A.; Fraga, D.; Veras, P. Advances in development of new treatment for Leishmaniasis. Biomed. Res. Int. 2015, 2015, 815023. [Google Scholar] [CrossRef] [PubMed]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 14, e0006052. [Google Scholar] [CrossRef]
- Rahman, R.; Goyal, V.; Haque, R.; Jamil, K.; Faiz, A.; Samad, R.; Ellis, S.; Balasegaram, M.; Boer, M.D.; Rijal, S.; et al. Safety and efficacy of short course combination regimens with AmBisome, miltefosine and paromomycin for the treatment of visceral leishmaniasis (VL) in Bangladesh. PLoS Negl. Trop. Dis. 2017, 11, e0005635. [Google Scholar] [CrossRef]
- Rogers, M.; Kropf, P.; Choi, B.S.; Dillon, R.; Podinovskaia, M.; Bates, P.; Müller, I. Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog. 2009, 5, e1000555. [Google Scholar] [CrossRef]
- Ilari, A.; Fiorillo, A.; Genovese, I.; Colotti, G. Polyamine-trypanothione pathway: An update. Future Med. Chem. 2017, 9, 61–77. [Google Scholar] [CrossRef]
- Da Silva, E.R.; Castilho, T.M.; Pioker, F.C.; Tomich de Paula Silva, C.H.; Floeter-Winter, L.M. Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int. J. Parasitol. 2002, 32, 727–737. [Google Scholar] [CrossRef]
- Bocedi, A.; Dawood, K.F.; Fabrini, R.; Federici, G.; Gradoni, L.; Pedersen, J.Z.; Ricci, G. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites. FASEB J. 2010, 24, 1035–1042. [Google Scholar] [CrossRef]
- Colotti, G.; Ilari, A. Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids 2011, 40, 269–285. [Google Scholar] [CrossRef]
- Reguera, R.M.; Balaña-Fouce, R.; Showalter, M.; Hickerson, S.; Beverley, S.M. Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Mol. Biochem. Parasitol. 2009, 165, 48–56. [Google Scholar] [CrossRef]
- Chawla, B.; Madhubala, R. Drug targets in Leishmania. J. Parasit. Dis. 2010, 34, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lepesheva, G.I.; Hargrove, T.Y.; Rachakonda, G.; Wawrzak, Z.; Pomel, S.; Cojean, S.; Nde, P.N.; Nes, W.D.; Locuson, C.W.; Calcutt, M.W.; et al. VFV as a New Effective CYP51 Structure-Derived Drug Candidate for Chagas Disease and Visceral Leishmaniasis. J. Infect. Dis. 2015, 212, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, D.M.; Capers, J.; Salem, M.M.; DeLuca-Fradley, K.; Croft, S.L.; Werbovetz, K.A. Antikinetoplastid activity of 3-aryl-5-thiocyanatomethyl-1,2,4-oxadiazoles. Bioorg. Med. Chem. 2004, 12, 2815–2824. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Kumar, V. Indolizine: A biologically active moiety. Med. Chem. Res. 2014, 23, 3593–3606. [Google Scholar] [CrossRef]
- Jaisankar, P.; Pal, B.; Manna, R.K.; Pradhan, P.K.; Medda, S.; Basu, M.K.; Giri, V.S. Synthesis of antileishmanial(5R)-(-)-5-carbomethoxy-3-formyl-5, 6-dihydroindolo-[2, 3-a]-indolizine. ARKIVOC 2003, ix, 150–157. [Google Scholar]
- Glisic, S.; Sencanski, M.; Perovic, V.; Stevanovic, S.; García-Sosa, A.T. Arginase Flavonoid Anti-Leishmanial in Silico Inhibitors Flagged against Anti-Targets. Molecules 2016, 21, 589. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth Thota, S.; Rodrigues, D.A.; Murteira Pinheiro, P.S.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef]
- Andrade, M.M.; Barros, M.T. Fast synthesis of N-acylhydrazones employing a microwave assisted neat protocol. J. Comb. Chem. 2010, 12, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.F.M.; Guidetti, B.; Chamayou, A.; André-Barrès, C.; Madacki, J.; Korduláková, J.; Mori, G.; Orena, B.S.; Chiarelli, L.R.; Pasca, M.R.; et al. Mechanochemical synthesis and biological C. evaluation of novel isoniazid derivatives with potent antitubercular activity. Molecules 2017, 22, 1457. [Google Scholar] [CrossRef]
- Bora, R.O.; Dar, B.; Pradhan, V.; Farooqui, M. 1,2,4-Oxadiazoles: Synthesis and Biological applications. Mini-Rev. Med. Chem. 2014, 14, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Barros, C.J.P.; Rufino de Freitas, J.J.; De Oliveira, R.N.; De Freitas Filho, J.R. Synthesis of amidoximes using an efficient and rapid ultrasound method. J. Chil. Chem. Soc. 2011, 56, 721–722. [Google Scholar] [CrossRef]
- Charlson, A.J.; Harington, J.S. The anti-inflammatory and analgesic activity of some benzimidazoles, and their ability to protect erythrocytes from hemolysis by silica powder. Carbohydr. Res. 1975, 43, 383–387. [Google Scholar] [CrossRef]
- Alcalde, E.; Pérez-García, L.; Miravitlles, C.; Rius, J.; Valentí, E. Heterocyclic Betaines. 13. Synthesis, Electronic and Molecular Structures of Methylenepyridinium and Methylenimidazolium Azolate Inner Salts. J. Organ. Chem. 1992, 57, 4829–4834. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Lizzi, F.; Perozzo, R.; Brun, R.; Cavalli, A. Synthesis of a small library of 2-phenoxy-1,4-naphthoquinone and 2-phenoxy-1,4-anthraquinone derivatives bearing anti-trypanosomal and anti-leishmanial activity. Bioorg. Med. Chem. Lett. 2008, 18, 2272–2276. [Google Scholar] [CrossRef] [PubMed]
- Veljkovic, V. A Theoretical Approach to Preselection of Carcinogens and Chemical Carcinogenesis; Gordon & Breach: New York, NY, USA, 1980. [Google Scholar]
- Veljkovic, V.; Slavic, I. Simple general-model pseudopotential. Phys. Rev. Lett. 1972, 29, 105–107. [Google Scholar] [CrossRef]
- Virtual Screening Workflow; Schrödinger, LLC: New York, NY, USA, 2018.
- García-Sosa, A.T.; Sild, S.; Maran, U. Docking and virtual screening using distributed grid technology. QSAR Comb. Sci. 2009, 28, 815–821. [Google Scholar] [CrossRef]
- García-Sosa, A.T.; Maran, U. Improving the use of ranking in virtual screening against HIV-1 integrase with triangular numbers and including ligand profiling with Antitargets. J. Chem. Inf. Model. 2014, 54, 3172–3185. [Google Scholar] [CrossRef] [PubMed]
- Balaraman, K.; Vieira, N.C.; Moussa, F.; Vacus, J.; Cojean, S.; Pomel, S.; Bories, C.; Figadère, B.; Kesavan, V.; Loiseau, P.M. In vitro and in vivo antileishmanial properties of a 2-n-propylquinoline hydroxypropyl β-cyclodextrin formulation and pharmacokinetics via intravenous route. Biomed. Pharmacother. 2015, 76, 127–133. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | Hydrazide | Aldehyde | Yield (%) | Purity 1 (%) |
---|---|---|---|---|
1 | | | 61 | 92 |
2 | | | 72 | 99 |
3 | | | 71 | 99 |
4 | | | quant. | 99 |
5 | | | 70 | 92 |
No | Code | AQVN | EIIP | Structure | Pred. pIC50 | Autodock Score (kcal/mol) Leishmania Arginase | Autodock Score (kcal/mol) Human Arginase | Leishmania donovani LV9 axenic Amastigotes Forms IC50 ± SD (μM) | Leishmania donovani Intramacrophage Amastigotes Forms IC50 ± SD (μM) | Toxicity on RAW 264.7 Macrophages CC50 ± SD (μM) |
---|---|---|---|---|---|---|---|---|---|---|
17 | 1 | 3.28 | 0.125 | | 3.85 | −6 | −5.9 | 11.89 ± 1.87 | 6.25 ± 1.89 | 13.86 ± 2.11 |
21 | 2 | 3.304 | 0.129 | | 3.77 | −5.8 | −5.0 | 1.09 ± 0.12 | 2.18 ± 0.01 | 4.87 ± 0.39 |
22 | 3 | 3.304 | 0.129 | | 3.94 | −6.2 | −5.8 | > 100 | > 100 | > 100 |
23 | 4 | 3.357 | 0.134 | | 3.55 | −6.3 | −6.2 | 12.50 ± 0.61 | 11.22 ± 0.62 | 16.34 ± 1.42 |
24 | 5 | 3.267 | 0.123 | | 3.54 | −6.4 | −6.3 | 61.52 ± 5.99 | 55.22 ± 4.77 | >100 |
25 | 8 | 3.259 | 0.122 | | 3.77 | −7.4 | −6.8 | 59.86 ± 6.45 | 51.26 ± 4.35 | >100 |
26 | 7 | 3.4 | 0.134 | | 5.39 | −7.4 | −7.3 | 51.21 ± 4.98 | 47.24 ± 3.12 | >100 |
38 | 12 | 3.3 | 0.128 | | 3.94 | −7.6 | −6.8 | >100 | >100 | >100 |
Compound | Leishmania donovani LV9 Axenic Amastigotes IC50 ± SD (μM) | Leishmania donovani LV9 Intramacrophage Amastigotes IC50 ± SD (μM) | Cytotoxicity on RAW 264.7 Macrophages CC50 ± SD (μM) | SI = CC50/IC50 Intramacro. Amas. |
---|---|---|---|---|
2 | 1.09 ± 0.12 | 2.18 ± 0.12 | 4.87 ± 0.39 | 2.2 |
3 | >100 | >100 | >100 | / |
4 | 12.50 ± 0.62 | 11.22 ± 0.62 | 16.34 ± 1.42 | 1.4 |
5 | 61.52 ± 5.99 | 55.22 ± 4.77 | > 100 | >1.8 |
1 | 11.89 ± 1.87 | 6.25 ± 1.89 | 13.86 ± 2.11 | 2.2 |
8 | 59.86 ± 6.45 | 51.26 ± 4.35 | >100 | >1.9 |
7 | 51.21 ± 4.98 | 47.24 ± 3.12 | >100 | >2.1 |
12 | >100 | >100 | >100 | / |
AmB | 0.20 ± 0.08 | 0.11 ± 0.09 | 5.36 ± 0.52 | 48.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stevanovic, S.; Sencanski, M.; Danel, M.; Menendez, C.; Belguedj, R.; Bouraiou, A.; Nikolic, K.; Cojean, S.; Loiseau, P.M.; Glisic, S.; Baltas, M.; García-Sosa, A.T. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. Molecules 2019, 24, 1282. https://doi.org/10.3390/molecules24071282
Stevanovic S, Sencanski M, Danel M, Menendez C, Belguedj R, Bouraiou A, Nikolic K, Cojean S, Loiseau PM, Glisic S, Baltas M, García-Sosa AT. Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets. Molecules. 2019; 24(7):1282. https://doi.org/10.3390/molecules24071282
Chicago/Turabian StyleStevanovic, Strahinja, Milan Sencanski, Mathieu Danel, Christophe Menendez, Roumaissa Belguedj, Abdelmalek Bouraiou, Katarina Nikolic, Sandrine Cojean, Philippe M. Loiseau, Sanja Glisic, Michel Baltas, and Alfonso T. García-Sosa. 2019. "Synthesis, In Silico, and In Vitro Evaluation of Anti-Leishmanial Activity of Oxadiazoles and Indolizine Containing Compounds Flagged against Anti-Targets" Molecules 24, no. 7: 1282. https://doi.org/10.3390/molecules24071282