Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats
Abstract
:1. Introduction
2. Results
2.1. The Effect of ASD Treatment on Lipid Level in HFD-Induced Hyperlipidemia Rats
2.2. Metabolomics Analysis of ASD Treatment in HFD-Induced Hyperlipidemia Rats
2.2.1. The Effect of ASD Treatment on Serum Metabolites
2.2.2. The Effect of ASD Treatment on Urine Metabolites
2.2.3. The Effect of ASD Treatment on Feces Metabolites
2.3. The Effect of ASD Treatment on the Structure of Intestinal Microbiota in Feces
2.4. The Correlation between Fecal Metabolites and Microbiota
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animal Treatment
4.3. Biochemistry Assays
4.4. Metabolomics Analysis Experiment
4.4.1. Sample Preparation for UPLC-Q/TOF-MS
4.4.2. UPLC-Q/TOF-MS Analysis
4.4.3. Metabolomics Data Analysis
4.5. Intestinal Microbiota Analysis Experiment
4.5.1. DNA Extraction and High-Throughput Sequencing
4.5.2. Sequencing Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.; Miao, H.; Feng, Y.L.; Zhao, Y.Y.; Lin, R.C. Metabolomics in dyslipidemia. Adv. Clin. Chem. 2014, 66, 101–119. [Google Scholar] [PubMed]
- Kim, C.H.; Mitchell, J.B.; Bursill, C.A.; Sowers, A.L.; Thetford, A.; Cook, J.A.; van Reyk, D.M.; Davies, M.J. The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE-/- mice. Atherosclerosis 2015, 240, 234–241. [Google Scholar] [CrossRef]
- Abliz, A.; Aji, Q.; Abdusalam, E.; Sun, X.; Abdurahman, A.; Zhou, W.; Moore, N.; Umar, A. Effect of Cydonia oblonga Mill. leaf extract on serum lipids and liver function in a rat model of hyperlipidaemia. J. Ethnopharmacol. 2014, 151, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Insull, W., Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: A scientifc review. South Med. J. 2006, 99, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Asbach, P.; Paetsch, I.; Stawowy, P.; Sander, B.; Fleck, E. Statin-associated focal myositis. Int. J. Cardiol. 2009, 133, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.J.; Lafn, L.J.; Davidson, M.H. Overcoming toxicity and side-effects of lipid-lowering therapies. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 439–452. [Google Scholar] [CrossRef]
- Li, C.M.; Tian, J.W.; Li, G.S.; Jiang, W.L.; Xing, Y.L.; Hou, J.; Zhu, H.B.; Xu, H.; Zhang, G.B.; Liu, Z.F.; et al. Asperosaponin VI protects cardiac myocytes from hypoxia-induced apoptosis via activation of the PI3K/Akt and CREB pathways. Eur. J. Pharmacol. 2010, 649, 100–107. [Google Scholar] [CrossRef]
- Li, C.M.; Liu, Z.F.; Tian, J.W.; Li, G.S.; Jiang, W.G.; Zhang, G.B.; Chen, F.F.; Lin, P.Y.; Ye, Z.G. Protective roles of Asperosaponin VI, a triterpene saponin isolated from Dipsacus asper Wall on acute myocardial infarction in rats. Eur. J. Pharmacol. 2010, 627, 235–241. [Google Scholar] [CrossRef]
- Li, C.M.; Gao, Y.L.; Tian, J.W.; Xing, Y.L.; Zhu, H.B.; Shen, J.Y. Long-term oral Asperosaponin VI attenuates cardiac dysfunction, myocardial fibrosis in a rat model of chronic myocardial infarction. Food Chem. Toxicol. 2012, 50, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.Q.; Yang, Z.L.; Xu, L.; Li, P.; Hu, Y.Z. Akebia saponin D, a saponin component from Dipsacus asper Wall, protects PC 12 cells against amyloid-beta induced cytotoxicity. Cell Biol. Int. 2009, 33, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, L.N.; Ma, L.; You, R.; Cui, R.; Ji, D.; Wu, Y.; Zhang, C.F.; Yang, Z.L.; Ji, H. Akebia saponin D attenuates ibotenic acid-induced cognitive deficits and pro-apoptotic response in rats: Involvement of MAPK signal pathway. Pharmacol. Biochem. Behav. 2012, 101, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, L.N.; Du, Q.M.; Ma, L.; Chen, L.; You, R.; Liu, L.; Ling, J.J.; Yang, Z.L.; Ji, H. Akebia Saponin D attenuates amyloid beta-induced cognitive deficits and inflammatory response in rats: Involvement of Akt/NF-kappa B pathway. Behav. Brain Res. 2012, 235, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.D.; Yang, X.L.; Chen, T.; Ji, J.; Lan, L.; Hu, R.; Ji, H. Treatment with Akebia Saponin D Ameliorates A beta(1-42)-Induced Memory Impairment and Neurotoxicity in Rats. Molecules 2016, 21, 323. [Google Scholar] [CrossRef]
- Wang, Y.H.; Shen, J.Y.; Yang, X.L.; Jin, Y.; Yang, Z.L.; Wang, R.F.; Zhang, F.M.; Linhardt, R.J. Akebia saponin D reverses corticosterone hypersecretion in an Alzheimer’s, disease rat model. Biomed. Pharmacother. 2018, 107, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.R. Akebia saponin D of Chinese herbal medicine Mu-Tong induces osteoclast differentiation from monocyte/macrophage lineage precursor cells. Allergy 2013, 68, 4. [Google Scholar]
- Niu, Y.B.; Li, Y.H.; Huang, H.T.; Kong, X.H.; Zhang, R.; Liu, L.; Sun, Y.; Wang, T.M.; Mei, Q.B. Asperosaponin VI, A saponin component from Dipsacus asper Wall, induces osteoblast differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway. Phytother. Res. 2011, 25, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.; Li, Q.; Yang, X.F.; Xie, Z.J.; Wang, Y.; Shi, J.; Chi, L.F.; Xu, W.J.; Hu, L.L.; Shi, H.L. Asperosaponin VI promotes bone marrow stromal cell osteogenic differentiation through the PI3K/AKT signaling pathway in an osteoporosis model. Sci. Rep. 2016, 6, 35233. [Google Scholar] [CrossRef]
- Liu, L.H. The effects and mechanisms of Akebia saponin D on the NAFLD livers. Acta Pharmacol. Sin. 2013, 34, 83–84. [Google Scholar]
- Gong, L.L.; Li, G.R.; Zhang, W.; Liu, H.; Lv, Y.L.; Han, F.F.; Wan, Z.R.; Shi, M.B.; Liu, L.H. Akebia Saponin D Decreases Hepatic Steatosis through Autophagy Modulation. J. Pharmacol. Exp. Ther. 2016, 359, 392–400. [Google Scholar] [CrossRef]
- Gong, L.L.; Yang, S.; Zhang, W.; Han, F.; Lv, Y.; Wan, Z.; Liu, H.; Jia, Y.; Xuan, L.; Liu, L. Akebia saponin D alleviates hepatic steatosis through BNip3 induced mitophagy. J. Pharmacol. Sci. 2018, 136, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, Y.F.; Shi, X.Z.; Hong, J.; Chen, J.; Gu, W.Q.; Lu, X.; Xu, G.W.; Ning, G. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta 2010, 81, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.H.; Hou, X.L.; Li, X.Y.; Qu, M.; Tong, C.Q.; Li, W. Metabolomics analysis of alloxan-induced diabetes in mice using UPLC–Q-TOF-MS after Crassostrea gigas polysaccharide treatment. Int. J. Biol. Macromol. 2018, 108, 550–557. [Google Scholar] [CrossRef]
- Tan, J.; Wang, C.Z.; Zhu, H.L.; Zhou, B.S.; Xiong, L.X.; Wang, F.; Li, P.Y.; Liu, J.P. Comprehensive metabolomics analysis of xueshuanxinmaining tablet in blood stasis model rats using UPLC-Q/TOF-MS. Molecules 2018, 23, 1650. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.J.; Sung, M.J.; Hur, H.J.; Yoo, M.; Choi, J.H.; Hwang, I.K.; Lee, S. Metabolomics analysis of the lipid-regulating effect of allium hookeri in a hamster model of high-fat diet-induced hyperlipidemia by UPLC/ESI-Q-TOF mass spectrometry. Evid. Based Complement. Altern. Med. 2018, 2018, 5659174. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shu, X.B.; Xu, H.C.; Zhang, C.L.; Yang, L.L.; Zhang, L.; Ji, G. Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J. Transl. Med. 2016, 14, 237. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.X.; Hu, J.L.; Gao, H.; Fan, L.L.; Chen, H.H.; Nie, S.P. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019, 86, 34–42. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Q.; Shou, J.W.; Zhao, Z.X.; Li, X.Y.; Zhang, X.F.; Ma, S.R.; He, C.Y.; Lin, Y.; Wen, B.Y.; et al. Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine. Theranostics 2017, 7, 2443–2451. [Google Scholar] [CrossRef]
- Ling, Z.X.; Liu, X.; Jia, X.Y.; Cheng, Y.W.; Luo, Y.Q.; Yuan, L.; Wang, Y.Z.; Zhao, C.N.; Guo, S.; Li, L.J.; et al. Impacts of infection with different toxigenic Clostridium difficile strains on fecal microbiota in children. Sci. Rep. 2014, 4, 7485. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.Y.; Jin, Y.; Tian, H.L.; Wang, Y.; Yang, X.L.; Yang, Z.L.; Guo, C.R.; Li, F. Enhancement of oral bioavailability of akebia saponin D by destroying self-micelles and inhibiting multidrug resistance-associated protein mediated efflux. RSC Adv. 2016, 6, 72439–72446. [Google Scholar] [CrossRef]
- Wang, Y.H.; Shen, J.Y.; Yang, X.L.; Jin, Y.; Yang, Z.L.; Wang, R.F.; Zhang, F.M.; Linhardt, R.J. Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Dev. Ind. Pharm. 2019, 45, 124–129. [Google Scholar] [CrossRef]
- Shen, J.Y.; Bi, J.P.; Tian, H.L.; Jin, Y.; Wang, Y.; Yang, X.L.; Yang, Z.L.; Kou, J.P.; Li, F. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with akebia saponin D–phospholipid complex. Int. J. Nanomed. 2016, 11, 4919–4929. [Google Scholar]
- Beger, R.D.; Dun, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Yang, B.; Sun, H.; Zhang, A.H. Pattern recognition approaches and computational systems tools for ultraperformance liquid chromatography-mass spectrometry-based comprehensive metabonomic profiling and pathways analysis of biological data sets. Anal. Chem. 2012, 84, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Duggan, G.; Weljie, A.; Hittel, D.S.; Wasserman, D.H.; Vogel, H.J. Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes Obes. Metab. 2008, 10, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Zemel, M.B.; Bruckbauer, A. Effects of a leucine and pyridoxine-containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects. Nutrients 2012, 4, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zemel, M.B. Leucine and calcium regulate fat metabolism and energy partitioning in murine adipocytes and muscle cells. Lipids 2007, 42, 297–305. [Google Scholar] [CrossRef]
- Chen, Q.; Reimer, R.A. Dairy protein and leucine alter GLP-1 release and mRNA of genes involved in intestinal lipid metabolism in vitro. Nutrition 2009, 25, 340–349. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, G.J.; Wu, D.; Zhu, L.L.; Ma, B.; Du, Y. Application of GC/MS-based metabonomic profiling in studying the lipid-regulating effects of Ginkgo biloba extract on diet-induced hyperlipidemia in rats. Acta Pharmacol. Sin. 2009, 30, 1674–1687. [Google Scholar] [CrossRef] [PubMed]
- Catalano, K.J.; Maddux, B.A.; Szary, J.; Youngren, J.F.; Goldfine, I.D.; Schaufele, F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xi, P.B.; Lin, Y.C.; Jiang, Z.Y.; Zheng, C.T.; Zhou, G.L.; Jiang, S.Q. Rearch of effects of dietary tryptophan on growth, carcass quality, body composition deposition and hypothalamus 5- serotonin in 43-63 days huangyu broilers. Chin. J. Anim. Nutr. 2009, 21, 137–145. [Google Scholar]
- Melis, G.C.; Wengel, N.; Boelens, P.G.; Leeuwen, P.A. Glutamine: Recent developments in research on the clinical significance of glutamine. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, M.; Murakami, E.; Kakehi, K. Chromatographic and capillary electrophoretic methods for the analysis of nicotinic acid and its metabolites. J. Chromatogr. B 2000, 747, 229–240. [Google Scholar] [CrossRef]
- Neish, A.S. Microbes in gastrointestinal health and disease. Gastroenterology. 2009, 136, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Tang, W.H.W. Gut Microbiota and Atherosclerosis. Curr. Atheroscler. Rep. 2017, 19. [Google Scholar] [CrossRef]
- Wang, Z.N.; Zhao, Y.Z. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018, 9, 416–431. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, Y.F.; Zhang, M.H.; Pang, X.Y.; Xu, J.; Kang, C.Y.; Li, M.; Zhang, C.H.; Zhang, Z.G.; Zhang, Y.F. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS ONE 2012, 7, e42529. [Google Scholar] [CrossRef]
- Sun, S.S.; Wang, K.; Ma, K.; Bao, L.; Liu, H.W. An insoluble polysaccharide from the sclerotium of Poria cocos improves hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin. J. Nat. Med. 2019, 17, 3–14. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Xu, J.; Xue, Z.S.; Zhang, M.H.; Pang, X.Y.; Zhang, X.J.; Zhao, L.P. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 2015, 5, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2012, 444, 1027–1131. [Google Scholar] [CrossRef]
- Sandberg, J.; Kovatcheva-Datchary, P.; Bjorck, I.; Backhed, F.; Nilsson, A. Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. Eur. J. Nutr. 2018, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; De Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Bjorck, I.; Backhed, F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef]
- Liu, Z.H.; Maszenan, A.M.; Liu, Y.; Jern Ng, W. A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems, Desalin. Water Treat. 2015, 53, 2799–2807. [Google Scholar] [CrossRef]
- Hulin, S.J.; Singh, S.; Chapman, M.A.S.; Allan, A.; Langman, M.J.; Eggo, M.C. Sulphide-induced energy deficiency in colonic cells is prevented by glucose but not by butyrate. Aliment. Pharmacol. Ther. 2002, 16, 325–331. [Google Scholar] [CrossRef]
- Zhu, M.; Kang, Y.; Du, M. Maternal obesity alters gut microbial ecology in offspring of NOD mice. FASEB J. 2015, 29, 105–112. [Google Scholar]
- Lin, H.; An, Y.; Hao, F.; Wang, Y.; Tang, H. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Sci. Rep. 2016, 6, 21618. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhou, X.; Xia, T.S.; Chen, Z.; Li, J.; Liu, Q.; Alolga, R.N.; Chen, Y.; Lai, M.D.; Li, P.; et al. Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget 2016, 7, 9925–9938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.W.; Sun, W.L.; Yu, N.; Sun, J.; Yu, X.X.; Li, X.; Xing, Y.; Yan, D.; Ding, Q.Z.; Xiu, Z.L.; et al. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. J. Funct. Foods 2018, 46, 256–267. [Google Scholar] [CrossRef]
- He, K.; Hu, Y.R.; Ma, H.; Zou, Z.Y.; Xiao, Y.B.; Yang, Y.; Feng, M.; Li, X.G.; Ye, X.L. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim. Biophys. Acta 2016, 1862, 1696–1709. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
No. | RT (min) | Ion Mode | Formula | Mass | ppm | Identified | HMDB | MOD vs. CON | ASD vs. MOD | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIP | p-Value | Trend | VIP | p-Value | Trend | ||||||||
1 | 1.06 | + | C5H11NO2S | 150.0583 | 0.42 | L-Methionine (a) | HMDB00696 | 0.5472 | 0.9574 | Up | 1.4923 | 0.0297 | Up |
2 | 1.29 | + | C6H6N2O | 123.0552 | 0.48 | Niacinamide (a) | HMDB01406 | 0.3355 | 0.6946 | Down | 2.2065 | 0.0086 | Up |
3 | 1.37 | − | C6H13NO2 | 130.0872 | 0.94 | L-Leucine (a) | HMDB00687 | 0.0028 | 0.4151 | Down | 1.3135 | 0.0203 | Up |
4 | 1.50 | + | C8H9NO | 136.0757 | −0.11 | 2-Phenylacetamide (a) | HMDB10715 | 0.6854 | 0.8185 | Up | 1.6481 | 0.0191 | Up |
5 | 2.37 | + | C10H19NO4 | 218.1388 | −2.01 | Propionyl-L-carnitine | HMDB00824 | 1.5639 | 0.0111 | Up | 1.0147 | 0.2684 | Down |
6 | 4.90 | − | C11H11NO2 | 188.0714 | 2.47 | 3-Indolepropionic acid | HMDB02302 | 1.1230 | 0.0195 | Down | 1.2291 | 0.0791 | Up |
7 | 6.75 | − | C24H40O5 | 407.2809 | −1.40 | Cholic acid | HMDB00619 | 1.6343 | 0.0001 | Down | 0.2483 | 0.8277 | Up |
8 | 7.12 | + | C21H30O4 | 347.2222 | −2.02 | Corticosterone (a) | HMDB01547 | 0.7386 | 0.0776 | Down | 1.3824 | 0.0340 | Up |
9 | 7.56 | + | C21H39NO4 | 370.2957 | −0.07 | cis-5-Tetradecenoylcarnitine | HMDB02014 | 1.6167 | 0.0064 | Up | 0.6820 | 0.3477 | Down |
10 | 7.91 | + | C18H38NO5P | 380.2567 | 0.04 | Sphingosine 1-phosphate | HMDB00277 | 1.6649 | 0.0088 | Up | 0.3627 | 0.4348 | Down |
11 | 7.98 | + | C22H46NO7P | 468.3092 | 0.49 | LysoPC(14:0) | HMDB10379 | 1.5328 | 0.0008 | Down | 0.1945 | 0.9340 | Up |
12 | 8.04 | + | C18H40NO5P | 382.2722 | 0.66 | Sphinganine 1-phosphate | HMDB01383 | 1.8018 | 0.0005 | Up | 0.3383 | 0.8381 | Down |
13 | 8.09 | + | C26H48NO7P | 518.3246 | 0.04 | LysoPC(18:3(9Z,12Z,15Z)) | HMDB10388 | 1.5738 | 0.0005 | Down | 0.6690 | 0.6562 | Down |
14 | 8.17 | + | C26H46NO7P | 516.3065 | −4.89 | LysoPC(18:4(6Z,9Z,12Z,15Z)) | HMDB10389 | 1.7202 | 0.0002 | Down | 0.1072 | 0.7307 | Up |
15 | 8.19 | + | C25H47NO4 | 426.3584 | 0.24 | Elaidic carnitine | HMDB06464 | 1.7357 | 0.0007 | Up | 0.0138 | 0.8087 | Up |
16 | 8.27 | + | C23H48NO7P | 482.3249 | 0.66 | LysoPC(15:0) | HMDB10381 | 1.6095 | 0.0013 | Down | 0.1400 | 0.9923 | Down |
17 | 8.33 | + | C30H50NO7P | 568.3405 | 0.49 | LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | HMDB10404 | 1.6564 | 0.0012 | Down | 0.5903 | 0.9626 | Down |
18 | 8.50 | + | C25H50NO7P | 508.3403 | 1.17 | LysoPE(20:1(11Z)/0:0) | HMDB11512 | 1.6807 | 0.0001 | Down | 0.6203 | 0.6862 | Down |
19 | 8.52 | + | C30H52NO7P | 570.3553 | 0.11 | LysoPC(22:5(7Z,10Z,13Z,16Z,19Z)) | HMDB10403 | 1.7786 | 0.0004 | Down | 0.7303 | 0.3004 | Up |
20 | 8.53 | + | C25H49NO4 | 428.3740 | 0.08 | DL-Stearoylcarnitine | HMDB00848 | 1.7399 | 0.0029 | Up | 1.3606 | 0.2079 | Down |
21 | 8.56 | − | C21H44NO7P | 452.2790 | −1.67 | LysoPE(16:0) (a) | HMDB11473 | 0.9519 | 0.0071 | Down | 1.4901 | 0.0103 | Down |
22 | 8.98 | + | C30H54NO7P | 572.3715 | −1.10 | LysoPC(22:4(7Z,10Z,13Z,16Z)) | HMDB10401 | 1.3823 | 0.0251 | Down | 0.2440 | 0.8110 | Up |
23 | 9.08 | + | C25H52NO7P | 510.3565 | 0.66 | LysoPC(17:0) | HMDB12108 | 1.3741 | 0.0251 | Down | 1.2498 | 0.3201 | Down |
24 | 9.16 | − | C20H30O2 | 301.2175 | −0.72 | Eicosapentaenoic Acid | HMDB01999 | 1.4389 | 0.0096 | Down | 1.3958 | 0.1345 | Down |
25 | 9.43 | + | C23H48NO7P | 482.3249 | −0.78 | LysoPE(18:0) (a) | HMDB11130 | 1.1933 | 0.3201 | Up | 1.8859 | 0.0109 | Down |
26 | 9.64 | − | C27H46O4S | 465.3058 | −2.98 | Cholesterol sulfate | HMDB00653 | 1.2191 | 0.0232 | Down | 1.1410 | 0.1093 | Up |
27 | 10.50 | − | C20H34O2 | 305.2489 | −0.90 | Dihomo-γ-linolenic Acid | HMDB02925 | 1.6323 | 0.0092 | Up | 0.6575 | 0.6970 | Down |
28 | 11.39 | − | C20H36O2 | 307.2644 | −0.61 | Eicosadienoic Acid | HMDB05060 | 1.4032 | 0.0333 | Up | 0.9846 | 0.3784 | Down |
29 | 11.84 | + | C18H34O2 | 283.2636 | −0.13 | Oleic Acid | HMDB00207 | 1.4714 | 0.0450 | Up | 1.0214 | 0.3627 | Down |
No. | RT (min) | Ion Mode | Formula | Mass | ppm | Identified | HMDB | MOD vs. CON | ASD vs. MOD | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIP | p-Value | Trend | VIP | p-Value | Trend | ||||||||
1 | 0.71 | − | C5H6O5 | 145.0141 | 2.41 | Oxoglutaric acid (a) | HMDB00208 | 0.1924 | 0.7928 | Down | 1.2680 | 0.0053 | Down |
2 | 0.81 | + | C7H8N2O | 137.0708 | −4.22 | 2-Methylnicotinamide (a) | HMDB03152 | 1.7566 | 0.0143 | Down | 1.5038 | 0.0129 | Up |
3 | 1.22 | + | C4H5N3O | 112.0507 | −3.01 | Cytosine (a) | HMDB00630 | 0.9619 | 0.0576 | Up | 1.1377 | 0.0352 | Down |
4 | 1.46 | + | C5H7N3O | 126.0662 | −4.26 | 5-Methylcytosine (a) | HMDB02894 | 0.8145 | 0.0602 | Up | 1.1879 | 0.0127 | Down |
5 | 1.73 | − | C7H6O2 | 121.0294 | 3.76 | Benzoic acid | HMDB01870 | 1.4449 | 0.0056 | Down | 1.2835 | 0.0889 | Up |
6 | 1.87 | + | C6H13NO2 | 132.1019 | −4.09 | L-Leucine (a) | HMDB00687 | 1.0040 | 0.0171 | Up | 1.3214 | 0.0136 | Down |
7 | 2.07 | + | C5H6N2O2 | 127.0501 | −4.94 | Thymine (a) | HMDB00262 | 0.8082 | 0.5633 | Down | 1.3919 | 0.0166 | Up |
8 | 3.08 | + | C9H11NO2 | 166.0862 | −3.78 | L-Phenylalanine (a) | HMDB00159 | 1.1454 | 0.0018 | Up | 1.2179 | 0.0118 | Down |
9 | 3.43 | − | C8H15NO3 | 172.0977 | 1.89 | Acetyl-L-leucine (a) | HMDB11756 | 1.0070 | 0.0622 | Up | 1.1189 | 0.0048 | Down |
10 | 3.55 | − | C10H11NO3 | 385.1409 | 2.98 | Methylhippuric acid (a) | HMDB11723 | 0.5680 | 0.3307 | Up | 1.4407 | 0.0327 | Up |
11 | 3.66 | − | C13H16O7 | 283.0825 | 2.48 | p-Cresol glucuronide | HMDB11686 | 1.8653 | 0.0287 | Up | 0.7992 | 0.0716 | Down |
12 | 3.72 | + | C12H17N5O5 | 312.1306 | −0.30 | N2,N2-Dimethylguanosine (a) | HMDB04824 | 0.8670 | 0.0553 | Up | 1.0178 | 0.0155 | Down |
13 | 4.00 | + | C11H12N2O2 | 205.0972 | −2.48 | L-Tryptophan (a) | HMDB00929 | 0.9814 | 0.0171 | Up | 1.3191 | 0.0090 | Down |
14 | 4.13 | − | C9H11NO7S | 276.0186 | 2.92 | DOPA sulfate (a) | HMDB02028 | 0.9182 | 0.0056 | Up | 1.3098 | 0.0033 | Down |
15 | 4.77 | + | C8H5NO2 | 148.0392 | −4.26 | Indole-5,6-quinone (a) | HMDB06779 | 1.0051 | 0.0183 | Up | 1.2833 | 0.0209 | Down |
16 | 5.44 | + | C9H7NO2 | 162.0549 | −3.80 | 2-Indolecarboxylic acid | HMDB02285 | 1.8083 | 0.0195 | Down | 0.1418 | 0.6702 | Down |
17 | 5.64 | + | C8H17NO3 | 174.1124 | −3.31 | Hexanoylglycine (a) | HMDB00701 | 0.9603 | 0.1345 | Up | 1.1101 | 0.0092 | Down |
18 | 6.26 | + | C10H9NO2 | 176.0706 | −3.24 | 3-Indoleacetic Acid (a) | HMDB00197 | 0.6993 | 0.3707 | Up | 1.0799 | 0.0194 | Down |
19 | 10.59 | − | C16H32O2 | 255.2330 | 2.13 | Palmitic acid (a) | HMDB00220 | 1.4322 | 0.3588 | Down | 1.5776 | 0.0266 | Up |
No. | RT (min) | Ion Mode | Formula | Mass | ppm | Identified | HMDB | MON vs. CON | ASD vs. MOD | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VIP | p-Value | Trend | VIP | p-Value | Trend | ||||||||
1 | 0.73 | − | C5H9NO4 | 146.0457 | 1.33 | L-Glutamate (a) | HMDB00148 | 0.0031 | 0.4466 | Up | 1.8155 | 0.0119 | Down |
2 | 0.88 | − | C6H8N2O2 | 139.0512 | 0.87 | 1,4-Methylimidazoleacetic acid | HMDB02820 | 1.0421 | 0.0096 | Up | 0.9254 | 0.1370 | Down |
3 | 3.21 | + | C8H11N | 122.0965 | −0.34 | 1-Phenylethylamine (a) | HMDB02017 | 0.7189 | 0.0992 | Up | 1.5301 | 0.0095 | Up |
4 | 3.64 | + | C10H12N2 | 161.1072 | 0.83 | Tryptamine | HMDB00303 | 1.3791 | 0.0087 | Up | 0.6520 | 0.4670 | Down |
5 | 5.97 | − | C24H40O4 | 391.2889 | −8.03 | Deoxycholic Acid (a) | HMDB00518 | 1.3663 | 0.0007 | Up | 1.2736 | 0.0309 | UP |
6 | 8.65 | − | C16H30O2 | 253.2174 | −0.55 | cis-9-palmitoleic acid (a) | HMDB03229 | 0.7390 | 0.2962 | Up | 1.6506 | 0.0419 | Down |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Yang, X.; Yang, Z.; Huang, W.; Kou, J.; Li, F. Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats. Molecules 2019, 24, 1268. https://doi.org/10.3390/molecules24071268
Zhou P, Yang X, Yang Z, Huang W, Kou J, Li F. Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats. Molecules. 2019; 24(7):1268. https://doi.org/10.3390/molecules24071268
Chicago/Turabian StyleZhou, Peipei, Xiaolin Yang, Zhonglin Yang, Wenzhe Huang, Junping Kou, and Fei Li. 2019. "Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats" Molecules 24, no. 7: 1268. https://doi.org/10.3390/molecules24071268
APA StyleZhou, P., Yang, X., Yang, Z., Huang, W., Kou, J., & Li, F. (2019). Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats. Molecules, 24(7), 1268. https://doi.org/10.3390/molecules24071268