Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, “Click” and RDA Reactions
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of New Compounds
3.2.1. Synthesis of Amino Acids [(+)-2, (−)-2, (+)-11, (−)-11]
3.2.2. Synthesis of Boc-Protected Amino Acids [(+)-3, (−)-3, (+)-12, (−)-12]
3.2.3. Synthesis of Boc-Protected Propargyl Amides [(+)-4, (−)-4, (+)-13, (−)-13]
3.2.4. Synthesis of Domino Ring Closure Products [(−)-6, (+)-6, (−)-15 and (+)-15]
3.2.5. General Procedure for the Synthesis of (−)-7, (+)-7, (−)-16 and (+)-16 by Click Reaction
3.2.6. RDA Protocols for the Synthesis of Pyrimido[2,1-a]isoindols [(−)-8 (+)-8, (−)-9, (+)-9]
3.2.7. Representative Data for the Racemates (±)-4–(±)-16
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Held, F.E.; Guryev, A.A.; Fröhlich, T.; Hampel, F.; Kahnt, A.; Hutterer, C.; Steingruber, M.; Bahsi, H.; von Bojničić-Kninski, C.; Mattes, D.S. Facile Access to Potent Antiviral Quinazoline Heterocycles with Fluorescence Properties via Merging Metal-Free Domino Reactions. Nat. Commun. 2017, 8, 15071–15080. [Google Scholar] [CrossRef] [PubMed]
- Hutterer, C.; Hamilton, S.; Steingruber, M.; Zeitträger, I.; Bahsi, H.; Thuma, N.; Naing, Z.; Örfi, Z.; Örfi, L.; Socher, E. The Chemical Class of Quinazoline CoMpounds Provides a Core Structure for The Design of Anticytomegaloviral Kinase Inhibitors. Antiviral. Res. 2016, 134, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Alafeefy, A.M.; Kadi, A.A.; Al-Deeb, O.A.; El-Tahir, K.E.; Al-jaber, N.A. Synthesis, Analgesic and Anti-inflammatory Evaluation of Some Novel Quinazoline Derivatives. Eur. J. Med. Chem. 2010, 45, 4947–4952. [Google Scholar] [CrossRef] [PubMed]
- Madapa, S.; Tusi, Z.; Mishra, A.; Srivastava, K.; Pandey, S.; Tripathi, R.; Puri, S.; Batra, S. Search for New Pharmacophores for Antimalarial Activity. Part II: Synthesis and Antimalarial Activity of New 6-ureido-4-anilinoquinazolines. Bioorg. Med. Chem. 2009, 17, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, L.; Xiang, H.; Wu, J.; Wang, P.; Hu, D.; Xue, W.; Yang, S. Synthesis and Anticancer Activities of 5,6,7-trimethoxy-N-phenyl (ethyl)-4-aminoquinazoline Derivatives. Eur. J. Med. Chem. 2013, 66, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.; Zhang, Y.; Heinrich, J.-C.; Haupt, J.; Donakonda, S.; Lennig, P. Thymine derivatives and quinazoline-dione derivatives for the inhibition of HSP27. WO 2016016268 A1, 4 February 2016. [Google Scholar]
- Primeau, J.L.; Garrick, L.M.; Ocain, T.D.; Soll, R.M.; Dollings, P.J. Preparation of pyrimido-cycloalkanes as angiotensin II antagonists and antihyperlipidemics. WO 9308171 A1, 29 April 1993. [Google Scholar]
- Hasegawa, T.; Nakajima, H.; Kubota, D.; Okuma, K. Preparation of pyrimidine derivatives as poly(ADP-ribose) polymerase inhibitors. WO 2000042025 A1, 20 July 2000. [Google Scholar]
- Da Silva, F.d.C.; de Souza, M.C.B.; Frugulhetti, I.I.; Castro, H.C.; Silmara, L.d.O.; de Souza, T.M.L.; Rodrigues, D.Q.; Souza, A.M.; Abreu, P.A.; Passamani, F. Synthesis, HIV-RT Inhibitory Activity and SAR of 1-benzyl-1H-1,2,3-triazole Derivatives of Carbohydrates. Eur. J. Med. Chem. 2009, 44, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Katzung, B.G.; Trevor, A.J. Beta-Lactam and Other Cell Wall- and Membrane-Active Antibiotics. In Basic and Clinical Pharmacology 13E; McGraw-Hill Education: New York, NY, USA, 2014; p. 1145. [Google Scholar]
- Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, Through 1,3-Dipolar Cycloadditions. Eur. J. Org. Chem. 2014, 2014, 3289–3306. [Google Scholar] [CrossRef]
- Xia, Y.; Qu, F.; Peng, L. Triazole Nucleoside Derivatives Bearing Aryl Functionalities on the Nucleobases Show Antiviral and Anticancer Activity. Mini-Rev. Med. Chem. 2010, 10, 806–821. [Google Scholar] [CrossRef]
- Peterson, L.B.; Blagg, B.S. Click chemistry to probe Hsp90: Synthesis and Evaluation of a Series of Triazole-Containing Novobiocin Analogues. Bioorg. Med. Chem. Lett. 2010, 20, 3957–3960. [Google Scholar] [CrossRef]
- Doiron, J.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Čuperlović-Culf, M.; Robichaud, G.A.; Touaibia, M. Synthesis and Structure–Activity Relationship of 1-and 2-Substituted-1,2,3-Triazole Letrozole-Based Analogues as Aromatase Inhibitors. Eur. J. Med. Chem. 2011, 46, 4010–4024. [Google Scholar] [CrossRef]
- Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Chem. 2017, 71, 30–54. [Google Scholar] [CrossRef] [PubMed]
- Keivanloo, A.; Bakherad, M.; Lotfi, M. Use of Ligand-Assisted Click Reactions for the Rapid Synthesis of Novel 1,2,3-Triazole Pharmacophore-Based 1,2,4-Triazines and their Benzo-Fused Analogues. Tetrahedron 2017, 73, 5872–5882. [Google Scholar] [CrossRef]
- Maračić, S.; Kraljević, T.G.; Paljetak, H.Č.; Perić, M.; Matijašić, M.; Verbanac, D.; Cetina, M.; Raić-Malić, S. 1,2,3-Triazole Pharmacophore-Based Benzofused Nitrogen/Sulfur Heterocycles with Potential Anti-Moraxella Catarrhalis Activity. Bioorg. Med. Chem. 2015, 23, 7448–7463. [Google Scholar] [CrossRef] [PubMed]
- Ouahrouch, A.; Ighachane, H.; Taourirte, M.; Engels, J.W.; Sedra, M.H.; Lazrek, H.B. Benzimidazole-1,2,3-Triazole Hybrid Molecules: Synthesis and Evaluation for Antibacterial/Antifungal Activity. Arch. Pharm. Chem. Life Sci. 2014, 347, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Massarotti, A.; Aprile, S.; Mercalli, V.; Del Grosso, E.; Grosa, G.; Sorba, G.; Tron, G.C. Are 1,4- and 1,5-Disubstituted 1,2,3-Triazoles Good Pharmacophoric Groups? Chem. Med. Chem. 2014, 9, 2497–2508. [Google Scholar] [CrossRef] [PubMed]
- Kume, M. Synthesis and Structure-Activity Relation-ships of new 7β-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephalosporins with 1,2,3-Triazole in C-3 Side Chain. J. Antibiot. 1993, 46, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Masui, Y.; Goto, Y.; Kitaura, Y.; Mizutani, T.; Matsumura, I.; Sugata, Y.; Ide, Y.; Takayama, M.; Takahashi, H. Practical Large-Scale Synthesis of Cefmatilen, a New Cephalosporin Antibiotic. Org. Process. Res. Dev. 2004, 8, 744–753. [Google Scholar] [CrossRef]
- Chang, K.Y.; Kwon, S.H.; Nam, G.; Seo, J.H.; Kim, S.H.; Choi, K.I.; Kim, J.H.; Ha, D.C. New Cephalosporin Antibiotics with 3-Triazolylpyridiniummethyl Substituents. J. Antibiot. 2001, 54, 460–462. [Google Scholar] [CrossRef]
- Chitasombat, M.N.; Kontoyiannis, D.P. The ‘Cephalosporin Era’of Triazole Therapy: Isavuconazole, a Welcomed Newcomer for the Treatment of Invasive Fungal Infections. Expert Opin. Pharmaco. 2015, 16, 1543–1558. [Google Scholar] [CrossRef]
- Pellissier, H. Stereocontrolled Domino Reactions. Chem. Rev. 2012, 113, 442–524. [Google Scholar] [CrossRef]
- Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free Domino One-pot Protocols for Quinoline Synthesis. RSC Adv. 2015, 5, 42020–42053. [Google Scholar] [CrossRef]
- Tu, S.J.; Jiang, B. Microwave-Assisted Domino Reaction in Organic Synthesis. In Advances in Induction and Microwave Heating of Mineral and Organic Materials; Grundas, S.A., Ed.; InTech: Xuzhou, China, 2011; pp. 673–696. Available online: https://www.intechopen.com/books/advances-in-induction-and-microwave-heating-of-mineral-and-organic-materials/microwave-assisted-domino-reaction-in-organic-synthesis (accessed on 6 December 2018).
- Zhao, Y.H.; Li, Y.; Guo, T.; Tang, Z.; Deng, K.; Zhao, G. CuI-Catalyzed Domino Reactions for the Synthesis of Benzoxazine-Fused Isoquinolines under Microwave Irradiation. Synth. Commun. 2016, 46, 355–360. [Google Scholar] [CrossRef]
- Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Weinheim Wiley-VCH: Gottingen, Germany, 2006. [Google Scholar]
- Padwa, A.; Bur, S.K. The Domino Way to Heterocycles. Tetrahedron 2007, 63, 5341–5378. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Ye, P.; Sprague, K.; Sargent, K.; Yohannes, D.; Baldino, C.M.; Wilson, C.J.; Ng, S.C. Novel One-pot Total Syntheses of Deoxyvasicinone, Mackinazolinone, Isaindigotone, and Their Derivatives Promoted by Microwave Irradiation. Org. Lett. 2005, 7, 3363–3366. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Yamada, K. Amination/Cyclization Cascade by Acid-Catalyzed Activation of Indolenine for the One-Pot Synthesis of Phaitanthrin E. Org. Lett. 2016, 18, 6504–6507. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Terasaki, M. Synthesis of Phaitanthrin E and Tryptanthrin through Amination/Cyclization Cascade. Helv. Chim. Acta. 2018, 101, e1700284. [Google Scholar] [CrossRef]
- Rolfe, A.; Painter, T.O.; Asad, N.; Hur, M.Y.; Jeon, K.O.; Brzozowski, M.; Klimberg, S.V.; Porubsky, P.; Neuenswander, B.; Lushington, G.H. Triazole-Containing Isothiazolidine 1,1-dioxide Library Synthesis: One-pot, Multi-Component Protocols for Small Molecular Probe Discovery. Am. Chem. Soc. Comb. Sci. 2011, 13, 511–517. [Google Scholar] [CrossRef]
- Lundberg, P.; Hawker, C.J.; Hult, A.; Malkoch, M. Click Assisted One-pot Multi-step Reactions in Polymer Science: Accelerated Synthetic Protocols. Macromol. Rapid Commun. 2008, 29, 998–1015. [Google Scholar] [CrossRef]
- Esmaeili-Marandi, F.; Saeedi, M.; Yavari, I.; Mahdavi, M.; Shafiee, A. Synthesis of Novel Isoindolo [2,1-a] quinazolinedione Derivatives Containing a 1,2,3-Triazole Ring System. Helv. Chim. Acta. 2016, 99, 37–40. [Google Scholar] [CrossRef]
- Totobenazara, J.; Burke, A.J. New Click-chemistry Methods for 1,2,3-Triazoles Synthesis: Recent Advances and Applications. Tetrahedron Lett. 2015, 56, 2853–2859. [Google Scholar] [CrossRef]
- Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.Y.; Astruc, D. Metal-Catalyzed Azide-Alkyne “Click” Reactions: Mechanistic Overview and Recent Trends. Coord. Chem. Rev. 2016, 316, 1–20. [Google Scholar] [CrossRef]
- Singh, M.S.; Chowdhury, S.; Koley, S. Advances of Azide-Alkyne Cycloaddition-Click Chemistry over the Recent Decade. Tetrahedron 2016, 72, 5257–5283. [Google Scholar] [CrossRef]
- Tăbăcaru, A.; Furdui, B.; Ghinea, I.O.; Carac, G.; Dinică, R.M. Recent Advances in Click Chemistry Reactions Mediated by Transition Metal Based Systems. Inorg. Chim. Acta. 2017, 455, 329–349. [Google Scholar] [CrossRef]
- Stájer, G.; Csende, F.; Fülöp, F. The Retro Diels-Alder Reaction as a Valuable Tool for the Synthesis of Heterocycles. Curr. Org. Chem. 2003, 7, 1423–1432. [Google Scholar] [CrossRef]
- Suzuki, K.; Inomata, K.; Endo, Y. Enantiocontrolled Synthesis of Jasmonates via Tandem Retro-Diels− Alder− Ene Reaction Activated by a Silyl Substituent. Org. Lett. 2004, 6, 409–411. [Google Scholar] [CrossRef] [PubMed]
- González-Temprano, I.; Osante, I.; Lete, E.; Sotomayor, N. Enantiodivergent Synthesis of Pyrrolo [2,1-a] Isoquinolines Based on Diastereoselective Parham Cyclization and α-Amidoalkylation Reactions. J. Org. Chem. 2004, 69, 3875–3885. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.A.; Kerr, M.A. Heterocycles from Cyclopropanes: Applications in Natural Product Synthesis. Chem. Soc. Rev. 2009, 38, 3051–3060. [Google Scholar] [CrossRef]
- Yoder, R.A.; Johnston, J.N. A Case Study in Biomimetic Total Synthesis: Polyolefin Carbocyclizations to Terpenes and Steroids. Chem. Rev. 2005, 105, 4730–4756. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Huang, Z.T.; Wang, M.X. Heterocyclic Enamines: The Versatile Intermediates in the Synthesis of Heterocyclic Compounds and Natural Products. Curr. Org. Chem. 2004, 8, 325–351. [Google Scholar] [CrossRef]
- Palkó, M.; Sohár, P.; Fülöp, F. Synthesis and Transformations of diendo-3-Aminobicyclo[2.2.2]oct-5-ene-2-carboxylic Acid Derivatives. Molecules 2011, 16, 7691–7705. [Google Scholar] [CrossRef]
- Fekete, B.; Palkó, M.; Haukka, M.; Fülöp, F. Synthesis of Pyrrolo[1,2-a]pyrimidine Enantiomers via Domino Ring-Closure followed by Retro Diels-Alder Protocol. Molecules 2017, 22, 613. [Google Scholar] [CrossRef] [PubMed]
- Fekete, B.; Palkó, M.; Mándity, I.; Haukka, M.; Fülöp, F. A Domino Ring-Closure Followed by Retro-Diels–Alder Reaction for the Preparation of Pyrimido[2,1-a]isoindole Enantiomers. Eur. J. Org. Chem. 2016, 3519–3527. [Google Scholar] [CrossRef]
- Fülöp, F.; Miklós, F.; Forró, E. Diexo-3-aminonorbornane-2-carboxylic Acid as Highly Applicable Chiral Source for the Enantioselective Synthesis of Heterocycles. Synlett 2008, 1687–1689. [Google Scholar] [CrossRef]
- Miklós, F.; Tóth, Z.; Hänninen, M.M.; Sillanpää, R.; Forró, E.; Fülöp, F. Retro-Diels–Alder Protocol for the Synthesis of Pyrrolo[1,2-a]pyrimidine and Pyrimido[2,1-a]isoindole Enantiomers. Eur. J. Org. Chem. 2013, 4887–4894. [Google Scholar] [CrossRef]
- Miklós, F.; Bozó, K.; Galla, Z.; Haukka, M.; Fülöp, F. Traceless Chirality Transfer from a Norbornene β-Amino Acid to Pyrimido[2,1-a]isoindole Enantiomers. Tetrahedron: Asymmetry 2017, 28, 1401–1406. [Google Scholar] [CrossRef]
- Nekkaa, I.; Palko, M.; Mandity, I.; Miklos, F.; Fülöp, F. Continuous-Flow retro-Diels–Alder Reaction: A Process Window for Designing Heterocyclic Scaffolds. Eur. J. Org. Chem. 2018, 2018, 4456–4464. [Google Scholar] [CrossRef]
- Miklós, F.; Fülöp, F. “Dry” and “Wet” Green Synthesis of 2,2′-Disubstituted Quinazolinones. Eur. J. Org. Chem. 2010, 2010, 959–965. [Google Scholar] [CrossRef]
- Palkó, M.; Sándor, E.; Sohár, P.; Fülöp, F. Synthesis and Stereostructure of 3-amino-5- and -6-hydroxybicyclo[2.2.1]heptane-2-carboxylic Acid Diastereomers. Monats. Chem. 2005, 136, 2051–2058. [Google Scholar] [CrossRef]
- Stájer, G.; Szabó, E.A.; Fülöp, F.; Bernáth, G.; Sohár, P. Stereochemical Studies. 58. Saturated Heterocycles. 39. Preparation and Steric Structures of dihydro-1,3-oxazines, 1,3-oxazin-2-ones and 1,3-oxazine-2-thiones Fused with Norbornane and Norbornene. J. Heterocycl. Chem. 1983, 20, 1181–1185. [Google Scholar] [CrossRef]
- Stájer, G.; Mód, L.; Szabó, A.E.; Fülöp, F.; Bernáth, G.; Sohár, P. Stereochemical Studies—79 Synthesis and Kinetic Study on the Retrodiene Decomposition of Norbornene-condensed 1,3-oxazin-4-ones. Tetrahedron 1984, 40, 2385–2393. [Google Scholar] [CrossRef]
- Forró, E.; Fülöp, F. Vapour-assisted Enzymatic Hydrolysis of β-Lactams in a Solvent-free System. Tetrahedron: Asymmetry 2008, 19, 1005–1009. [Google Scholar] [CrossRef]
- Lloyd, M.; Lloyd, R.; Keene, P.; Osborne, A. A Concise Synthesis of Single-Enantiomer β-Lactams and β-Amino acids using Rhodococcus Globerulus. J. Chem. Technol. Biotechnol 2007, 82, 1099–1106. [Google Scholar] [CrossRef]
- Canonne, P.; Akssira, M.; Dahdouh, A.; Kasmi, H.; Boumzebra, M. A Convenient Synthesis of Bridged Azatricyclic Anhydrides. Tetrahedron 1993, 49, 1985–1992. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–16 are not available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palkó, M.; El Haimer, M.; Kormányos, Z.; Fülöp, F. Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, “Click” and RDA Reactions. Molecules 2019, 24, 772. https://doi.org/10.3390/molecules24040772
Palkó M, El Haimer M, Kormányos Z, Fülöp F. Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, “Click” and RDA Reactions. Molecules. 2019; 24(4):772. https://doi.org/10.3390/molecules24040772
Chicago/Turabian StylePalkó, Márta, Mohamed El Haimer, Zsanett Kormányos, and Ferenc Fülöp. 2019. "Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, “Click” and RDA Reactions" Molecules 24, no. 4: 772. https://doi.org/10.3390/molecules24040772
APA StylePalkó, M., El Haimer, M., Kormányos, Z., & Fülöp, F. (2019). Synthesis of Novel N-Heterocyclic Compounds Containing 1,2,3-Triazole Ring System via Domino, “Click” and RDA Reactions. Molecules, 24(4), 772. https://doi.org/10.3390/molecules24040772