Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro Antimicrobial Activity
2.3. In Vitro Cytotoxicity
3. Experimental
3.1. General
3.2. Synthesis of Methyl Adamantane-1-Carboxylate (2)
3.3. Synthesis of Adamantane-1-Carbohydrazide (3)
3.4. Synthesis of Hydrazide-Hydrazones 4a–i and 5a–k
3.5. Dertemination of Antimicrobial Activity by the Dilution Method
3.6. Determination of Cytotoxicity Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Backes, G.L.; Neumann, D.M.; Jursic, B.S. Synthesis and antifungal activity of substituted salicylaldehyde hydrazones, hydrazides and sulfohydrazides. Bioorg. Med. Chem. 2014, 22, 4629–4636. [Google Scholar] [CrossRef] [PubMed]
- Küçükgüzel, S.G.; Mazi, A.; Sahin, F.; Öztürk, S.; Stables, J. Synthesis and biological activities of diflunisal hydrazide–hydrazones. Eur. J. Med. Chem. 2003, 38, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Popiołek, Ł.; Biernasiuk, A. Synthesis and investigation of antimicrobial activities of nitrofurazone analogues containing hydrazide-hydrazone moiety. Saudi Pharm. J. 2017, 25, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Rollas, S.; Gulerman, N.; Erdeniz, H. Synthesis and antimicrobial activity of some new hydrazones of 4-fluorobenzoic acid hydrazide and 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines. Il Farm. 2002, 57, 171–174. [Google Scholar] [CrossRef]
- Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide–hydrazone derivatives. Eur. J. Med. Chem. 2014, 76, 539–548. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Wang, X.; Shi, L.; Yin, W.; Yang, Z.; He, H.; Liang, Y. Synthesis, antitumor activity and mechanism of action of novel 1,3-thiazole derivatives containing hydrazide–hydrazone and carboxamide moiety. Bioorg. Med. Chem. Lett. 2016, 26, 3263–3270. [Google Scholar] [CrossRef]
- Nasr, T.; Bondock, S.; Rashed, H.M.; Fayad, W.; Youns, M.; Sakr, T.M. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. Eur. J. Med. Chem. 2018, 151, 723–739. [Google Scholar] [CrossRef]
- Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and antituberculosis activity of indole–pyridine derived hydrazides, hydrazide–hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett. 2016, 26, 978–985. [Google Scholar] [CrossRef]
- Pavan, F.R.; Maia, P.I.S.; Leite, S.R.A.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q.F. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: Anti–Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem. 2010, 45, 1898–1905. [Google Scholar] [CrossRef]
- Bedia, K.K.; Elçin, O.; Seda, U.; Fatma, K.; Nathaly, S.; Sevim, R.; Dimoglo, A. Synthesis and characterization of novel hydrazide–hydrazones and the study of their structure–antituberculosis activity. Eur. J. Med. Chem. 2006, 41, 1253–1261. [Google Scholar] [CrossRef]
- Şenkardeş, S.; Kaushik-Basu, N.; Durmaz, İ.; Manvar, D.; Basu, A.; Atalay, R.; Küçükgüzel, Ş.G. Synthesis of novel diflunisal hydrazide–hydrazones as anti-hepatitis C virus agents and hepatocellular carcinoma inhibitors. Eur. J. Med. Chem. 2016, 108, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Davies, W.L.; Grunert, R.R.; Haff, R.F.; McGahen, J.W.; Neumayer, E.M.; Paulshock, M.; Watts, J.C.; Wood, T.R.; Hermann, E.C.; Hoffmann, C.E. Antiviral activity of 1-adamantanamine (amantadine). Science 1964, 144, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Wendel, H.A.; Snyder, M.T.; Pell, S. Trial of amantadine in epidemic influenza. Clin. Pharmacol. Ther. 1966, 7, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Vernier, V.G.; Harmon, J.B.; Stump, J.M.; Lynes, T.E.; Marvel, J.P.; Smith, D.H. The toxicologic and pharmacologic properties of amantadine hydrochloride. Toxicol. Appl. Pharmacol. 1969, 15, 642–665. [Google Scholar] [CrossRef]
- Tilley, J.W.; Levitan, P.; Kramer, M.J. Adamantylthiourea derivatives as antiviral agents. J. Med. Chem. 1979, 22, 1009–1010. [Google Scholar] [CrossRef]
- Aigami, K.; Inamoto, Y.; Takaishi, N.; Hattori, K.; Takatsuki, A.; Tamura, G. Biologically active polycycloalkanes. 1. Antiviral adamantane derivatives. J. Med. Chem. 1975, 18, 713–721. [Google Scholar] [CrossRef]
- Basarić, N.; Sohora, M.; Cindro, N.; Mlinarić-Majerski, K.; De Clercq, E.; Balzarini, J. Antiproliferative and antiviral activity of three libraries of adamantane derivatives. Archiv Pharm. 2014, 347, 334–340. [Google Scholar] [CrossRef]
- Hassan, G.S.; El-Emam, A.A.; Gad, L.M.; Barghash, A.E.M. Synthesis, antimicrobial and antiviral testing of some new 1-adamantyl analogues. Saudi Pharm. J. 2010, 18, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Göktaş, F.; Vanderlinden, E.; Naesens, L.; Cesur, N.; Cesur, Z. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide derivatives. Bioorg. Med. Chem. 2012, 20, 7155–7159. [Google Scholar] [CrossRef]
- El-Emam, A.A.; Al-Deeb, O.A.; Al-Omar, M.; Lehmann, J. Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones. Bioorg. Med. Chem. 2004, 12, 5107–5113. [Google Scholar] [CrossRef]
- Orzeszko, A.; Kamińska, B.; Orzeszko, G.; Starościak, B.J. Synthesis and antimicrobial activity of new adamantane derivatives II. Il Farm. 2000, 55, 619–623. [Google Scholar] [CrossRef]
- Orzeszko, A.; Gralewska, R.; Starościak, B.J.; Kazimierczuk, Z. Synthesis and antimicrobial activity of new adamantane derivatives I. Acta Biochim. Pol. 2000, 47, 87–94. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, S.S.; Leeb, C.F.; Chung, M.A.; Chern, Y.T. In vitro antitumor and antimicrobial activities of N-substituents of maleimide by adamantane and diamantane. Chemotherapy 1997, 43, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahaibi, L.; Hassan, H.; Abo-Kamar, A.; Ghabbour, H.; El-Emam, A. Adamantane-Isothiourea Hybrid Derivatives: Synthesis, Characterization, In Vitro Antimicrobial, and In Vivo Hypoglycemic Activities. Molecules 2017, 22, 710. [Google Scholar] [CrossRef] [PubMed]
- Balaji, G.L.; Sarveswari, S.; Vijayakumar, V. Synthesis of diversely substituted adamantanes as a new class of antimicrobial agent. Res. Chem. Intermed. 2015, 41, 6765–6776. [Google Scholar] [CrossRef]
- Al-Abdullah, E.; Al-Tuwaijri, H.; Hassan, H.; Al-Alshaikh, M.; Habib, E.; El-Emam, A. Synthesis, antimicrobial and hypoglycemic activities of novel N-(1-adamantyl) carbothioamide derivatives. Molecules 2015, 20, 8125–8143. [Google Scholar] [CrossRef]
- Tabbi, A.; Tebbani, D.; Caporale, A.; Saturnino, C.; Nabavi, S.F.; Giuseppe, P.; Arra, C.; Canturk, Z.; Turan-Zitouni, G.; Merazig, H. New Adamantyl Chalcones: Synthesis, Antimicrobial and Anticancer Activities. Curr. Top. Med. Chem. 2017, 17, 498–506. [Google Scholar] [CrossRef]
- Fesatidou, M.; Zagaliotis, P.; Camoutsis, C.; Petrou, A.; Eleftheriou, P.; Tratrat, C.; Haroun, M.; Geronikaki, A.; Ciric, A.; Sokovic, M. 5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg. Med. Chem. 2018, 26, 4664–4676. [Google Scholar] [CrossRef]
- El-Emam, A.A.; Al-Tamimi, A.M.S.; Al-Omar, M.A.; Alrashood, K.A.; Habib, E.E. Synthesis and antimicrobial activity of novel 5-(1-adamantyl)-2-aminomethyl-4-substituted-1,2,4-triazoline-3-thiones. Eur. J. Med. Chem. 2013, 68, 96–102. [Google Scholar] [CrossRef]
- El-Emam, A.A.; Alrashood, K.A.; Al-Omar, M.A.; Al-Tamimi, A.M.S. Synthesis and antimicrobial activity of N’-heteroarylidene-1-adamantylcarbohydrazides and (+/-)-2-(1-adamantyl)-4-acetyl-5-[5-(4-substituted phenyl-3-isoxazolyl)]-1,3,4-oxadiazolines. Molecules 2012, 17, 3475–3483. [Google Scholar] [CrossRef]
- Aguiar, D.F.; Dutra, L.L.A.; Dantas, W.M.; Camelo de Carvalho, G.G.; Gonçalves Lemes, R.P.; do Ó Pessoa, C.; Koscky Paier, C.R.; Barros Araujo, P.L.; Araujo, E.S.; Pena, L.J. Synthesis, Antitumor and Cytotoxic Activity of New Adamantyl O-Acylamidoximes and 3-Aryl-5-Adamantane-1, 2, 4-Oxadiazole Derivatives. Chemistry Select 2019, 4, 9112–9118. [Google Scholar] [CrossRef]
- Anusha, S.; Mohan, C.D.; Ananda, H.; Baburajeev, C.P.; Rangappa, S.; Mathai, J.; Fuchs, J.E.; Li, F.; Shanmugam, M.K.; Bender, A.; et al. Adamantyl-tethered-biphenylic compounds induce apoptosis in cancer cells by targeting Bcl homologs. Bioorg. Med. Chem. Lett. 2016, 26, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Fytas, C.; Zoidis, G.; Tsotinis, A.; Fytas, G.; Khan, M.A.; Akhtar, S.; Rahman, K.M.; Thurston, D.E. Novel 1-(2-aryl-2-adamantyl)piperazine derivatives with antiproliferative activity. Eur. J. Med. Chem. 2015, 93, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Musso, L.; Giannini, G.; Zuco, V.; De Cesare, M.; Zunino, F.; Dallavalle, S. Influence of the adamantyl moiety on the activity of biphenylacrylohydroxamic acid-based HDAC inhibitors. Eur. J. Med. Chem. 2014, 79, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.H.; Sun, J.; Wang, S.S.; Bu, W.; Yao, M.N.; Gao, K.; Song, Y.; Zhao, J.Y.; Lu, C.T.; Zhang, E.H.; et al. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives. J. Mol. Struct. 2016, 1108, 611–617. [Google Scholar] [CrossRef]
- Luo, W.; Tweedie, D.; Beedie, S.L.; Vargesson, N.; Figg, W.D.; Greig, N.H.; Scerba, M.T. Design, synthesis and biological assessment of N-adamantyl, substituted adamantyl and noradamantyl phthalimidines for nitrite, TNF-α and angiogenesis inhibitory activities. Bioorg. Med. Chem. 2018, 26, 1547–1559. [Google Scholar] [CrossRef]
- Kadi, A.A.; Al-Abdullah, E.S.; Shehata, I.A.; Habib, E.E.; Ibrahim, T.M.; El-Emam, A.A. Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5006–5011. [Google Scholar] [CrossRef]
- Kwon, S.W.; Kang, S.K.; Lee, J.H.; Bok, J.H.; Kim, C.H.; Rhee, S.D.; Jung, W.H.; Kim, H.Y.; Bae, M.A.; Song, J.S.; et al. Synthesis and 11β hydroxysteroid dehydrogenase 1 inhibition of thiazolidine derivatives with an adamantyl group. Bioorg. Med. Chem. Lett. 2011, 21, 435–439. [Google Scholar] [CrossRef]
- Lee, Y.H.; Shin, Y.J.; Ahn, S.K. 3-Amino-N-adamantyl-3-methylbutanamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitor. Bioorg. Med. Chem. Lett. 2014, 24, 1421–1425. [Google Scholar] [CrossRef]
- Tice, C.M.; Zhao, W.; Krosky, P.M.; Kruk, B.A.; Berbaum, J.; Johnson, J.A.; Bukhtiyarov, Y.; Panemangalore, R.; Scott, B.B.; Zhao, Y.; et al. Discovery and optimization of adamantyl carbamate inhibitors of 11β-HSD1. Bioorg. Med. Chem. Lett. 2010, 20, 6725–6729. [Google Scholar] [CrossRef]
- Baek, H.S.; Hong, Y.D.; Lee, C.S.; Rho, H.S.; Shin, S.S.; Park, Y.H.; Joo, Y.H. Adamantyl N-benzylbenzamide: New series of depigmentation agents with tyrosinase inhibitory activity. Bioorg. Med. Chem. Lett. 2012, 22, 2110–2113. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Comp. No. | R1 | R2 | m.p (°C) | Yield (%) | Molecular Formular (Mol. Wt.) | TLC * (Rf) |
---|---|---|---|---|---|---|
4a | H | 4-OH | 252.5–254.1 | 30.6 | C19H24N2O2 (312.41) | 0.36 |
4b | H | 4-NO2 | 226.0–227.6 | 60.5 | C19H23N3O3 (341.41) | 0.58 |
4c | H | 4-OC2H5 | 159.5–160.6 | 32.2 | C21H28N2O2 (340.47) | 0.57 |
4d | 3-NO2 | 4-OCH3 | 182.0–184.1 | 33.0 | C20H25N3O4 (371.44) | 0.44 |
4e | 3-NO2 | 4-Cl | 188.2–189.3 | 26.2 | C19H22ClN3O3 (375.85) | 0.56 |
4f | H | 4-Br | 190.7–191.0 | 29.0 | C19H23BrN2O (375.31) | 0.62 |
4g | H | 4-OCH3 | 171.6–173.0 | 30.0 | C20H26N2O2 (326.44) | 0.52 |
4h | H | 4-CH3 | 179.5–180.4 | 37.3 | C20H26N2O (310.44) | 0.66 |
4i | H | H | 174.4–175.2 | 54.5 | C19H24N2O (296.41) | 0.59 |
5a | H | 4-OH | 289.6–290.5 | 44.0 | C18H22N2O2 (298.39) | 0.33 |
5c | H | 4-OC2H5 | 235.2–236.4 | 15.1 | C20H26N2O2 (326.44) | 0.59 |
5e | 3-NO2 | 4-Cl | 247.8–248.5 | 50.6 | C18H20ClN3O3 (361.83) | 0.55 |
5i | H | H | 186.9–187.2 | 60.5 | C18H22N2O (282.39) | 0.54 |
5j | 2-OH | 5-CH3 | 247.6–248.8 | 60.4 | C19H24N2O2 (312.41) | 0.57 |
5k | 2-CH3 | 5-CH3 | 283.5–284.0 | 35.5 | C20H26N2O (310.44) | 0.45 |
Comp. No. | MIC of Synthesized Compounds (μM) | ||||||
---|---|---|---|---|---|---|---|
Gram (+) | Gram (−) | Fungus | |||||
EF | SA | BC | EC | PA | SE | CA | |
4a | 12.5 | 12.5 | 12.5 | - | - | - | 12.5 |
4b | 25 | 25 | 25 | - | - | - | 25 |
4c | 25 | 25 | 25 | - | - | - | 25 |
4d | 12.5 | 50 | 100 | - | - | - | 6.25 |
4e | 25 | 50 | 50 | - | - | - | 25 |
4f | 50 | 50 | 50 | - | - | - | 12.5 |
4g | 25 | 25 | 100 | - | - | - | 25 |
4h | 25 | 25 | 50 | - | - | - | 12.5 |
4i | 25 | 50 | 50 | - | - | - | 25 |
5a | 12.5 | 25 | 25 | - | - | - | 12.5 |
5c | 12.5 | 50 | 100 | - | - | - | 12.5 |
5e | 25 | 25 | 25 | - | - | - | 25 |
5i | 50 | 50 | 50 | - | - | - | 50 |
5j | 50 | 50 | 50 | - | - | - | 25 |
5k | 25 | 25 | 25 | - | - | - | 25 |
STM | 350 | 350 | 175 | 44 | 350 | 175 | NT |
CHM | NT | NT | NT | NT | NT | NT | 114 |
Comp. No. | IC50 of Synthesized Compounds (μM) | ||||||
---|---|---|---|---|---|---|---|
Gram (+) | Gram (−) | Fungus | |||||
EF | SA | BC | EC | PA | SE | CA | |
4a | 6.35 | 6.77 | 6.12 | - | - | - | 6.37 |
4b | 11.56 | 11.45 | 12.56 | - | - | - | 12.78 |
4c | 13.24 | 12.67 | 12.77 | - | - | - | 13.11 |
4d | 6.88 | 25.45 | 52.11 | - | - | - | 3.56 |
4e | 13.55 | 25.11 | 25.99 | - | - | - | 13.57 |
4f | 24.79 | 13.44 | 25.33 | - | - | - | 6.77 |
4g | 12.56 | 12.55 | 56.7 | - | - | - | 11.55 |
4h | 13.22 | 13.45 | 23.88 | - | - | - | 6.45 |
4i | 12.56 | 25.66 | 25.65 | - | - | - | 12.33 |
5a | 6.73 | 12.33 | 12.37 | - | - | - | 6.25 |
5c | 6.77 | 26.55 | 26.78 | - | - | - | 6.66 |
5e | 13.25 | 12.67 | 12.33 | - | - | - | 13.22 |
5i | 25.66 | 26.55 | 26.56 | - | - | - | 25.33 |
5j | 24.58 | 24.56 | 24.33 | - | - | - | 11.45 |
5k | 12.35 | 12.45 | 12.33 | - | - | - | 13.46 |
Comp. No. | Conc. | Hep3B | Hela | A549 | MCF-7 |
---|---|---|---|---|---|
4a | 30 µM | 63.89 ± 0.69 | 73.09 ± 2.31 | 67.78 ± 0.26 | 63.28 ± 1.41 |
100 µM | 56.53 ± 1.32 | 66.87 ± 1.10 | 51.63 ± 0.81 | 58.60 ± 0.32 | |
4b | 30 µM | 66.83 ± 1.15 | 82.84 ± 1.37 | 66.89 ± 0.94 | 64.32 ± 2.92 |
100 µM | 56.49 ± 2.17 | 77.20 ± 0.90 | 62.26 ± 0.15 | 52.64 ± 2.02 | |
4c | 30 µM | 80.62 ± 1.25 | 93.64 ± 0.88 | 77.76 ± 1.51 | 79.36 ± 1.40 |
100 µM | 72.74 ± 2.00 | 90.51 ± 1.28 | 70.20 ± 0.13 | 67.78 ± 0.95 | |
4d | 30 µM | 96.80 ± 0.26 | >100 | 65.33 ± 1.28 | 90.20 ± 0.25 |
100 µM | 84.59 ± 2.39 | 86.34 ± 1.35 | 62.01 ± 2.37 | 78.82 ± 2.22 | |
4e | 30 µM | 94.59 ± 2.20 | 80.07 ± 1.87 | 64.43 ± 0.49 | 60.94 ± 1.39 |
100 µM | 55.91 ± 1.70 | 44.37 ± 1.39 | 38.51 ± 1.59 | 38.69 ± 1.20 | |
4f | 30 µM | >100 | 88.26 ± 1.74 | 76.22 ± 0.98 | 94.68 ± 1.33 |
100 µM | 97.95 ± 2.43 | 83.18 ± 0.20 | 73.68 ± 1.03 | 91.27 ± 2.26 | |
4g | 30 µM | 91.63 ± 2.63 | 96.61 ± 1.98 | 87.40 ± 0.95 | 83.11 ± 2.86 |
100 µM | 77.00 ± 1.84 | 79.46 ± 1.28 | 70.61 ± 1.66 | 71.75 ± 1.71 | |
4h | 30 µM | 98.29 ± 2.46 | >100 | 78.42 ± 0.83 | 91.59 ± 2.29 |
100 µM | 75.83 ± 2.76 | 99.77 ± 1.89 | 68.99 ± 2.36 | 70.66 ± 2.57 | |
4i | 30 µM | 81.96 ± 1.67 | 88.70 ± 1.79 | 68.43 ± 1.72 | 59.77 ± 2.41 |
100 µM | 80.7 ± 2.17 | 87.75 ± 0.29 | 67.73 ± 1.89 | 57.24 ± 0.75 | |
5a | 30 µM | 87.03 ± 1.28 | 87.53 ± 0.21 | 69.08 ± 2.56 | 86.14 ± 0.49 |
100 µM | 68.89 ± 2.18 | 68.26 ± 2.02 | 50.78 ± 1.86 | 64.33 ± 1.76 | |
5c | 30 µM | 88.96 ± 0.91 | 89.07 ± 1.21 | 90.47 ± 2.23 | 70.30 ± 1.23 |
100 µM | 78.97 ± 1.82 | 85.41 ± 1.34 | 81.32 ± 1.20 | 65.62 ± 0.64 | |
5e | 30 µM | 57.77 ± 1.59 | 76.75 ± 1.07 | 36.42 ± 0.94 | 52.56 ± 0.75 |
100 µM | 37.78 ± 2.44 | 40.42 ± 0.38 | 19.62 ± 1.74 | 34.13 ± 2.22 | |
5i | 30 µM | 83.16 ± 1.19 | 89.12 ± 2.43 | 79.49 ± 0.94 | 71.53 ± 1.64 |
100 µM | 74.90 ± 1.34 | 84.28 ± 2.12 | 55.22 ± 1.63 | 65.31 ± 1.66 | |
5j | 30 µM | 92.80 ± 2.24 | 68.96 ± 2.38 | 78.71 ± 1.75 | 86.48 ± 2.08 |
100 µM | 85.71 ± 2.28 | 57.90 ± 1.35 | 59.18 ± 2.01 | 79.86 ± 2.13 | |
5k | 30 µM | 98.51 ± 0.38 | 82.96 ± 0.59 | 62.55 ± 0.59 | 91.80 ± 0.35 |
100 µM | 83.34 ± 1.65 | 74.27 ± 1.67 | 52.39 ± 1.54 | 77.66 ± 1.54 | |
CPT * | 0.3 μM | 69.56 ± 1.27 | 57.06 ± 1.35 | 67.68 ± 1.88 | 56.68 ± 0.68 |
14.4 μM | 37.65 ± 1.21 | 18.61 ± 0.56 | 26.74 ± 2.16 | 28.89 ± 1.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, V.H.; Phan, T.P.D.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety. Molecules 2019, 24, 4000. https://doi.org/10.3390/molecules24214000
Pham VH, Phan TPD, Phan DC, Vu BD. Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety. Molecules. 2019; 24(21):4000. https://doi.org/10.3390/molecules24214000
Chicago/Turabian StylePham, Van Hien, Thi Phuong Dung Phan, Dinh Chau Phan, and Binh Duong Vu. 2019. "Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety" Molecules 24, no. 21: 4000. https://doi.org/10.3390/molecules24214000
APA StylePham, V. H., Phan, T. P. D., Phan, D. C., & Vu, B. D. (2019). Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety. Molecules, 24(21), 4000. https://doi.org/10.3390/molecules24214000