Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen Phosphorylase
Abstract
1. Introduction
2. Results
2.1. Synthesis
2.2. Kinetic Experiments
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rines, A.K.; Sharabi, K.; Tavares, C.D.J.; Puigserver, P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat. Rev. Drug Discov. 2016, 15, 786–804. [Google Scholar] [CrossRef] [PubMed]
- Gimisis, T. Synthesis of N-Glucopyranosidic Derivatives as Potential Inhibitors that Bind at the Catalytic Site of Glycogen Phosphorylase. Mini-Rev. Med. Chem. 2010, 10, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Donnier-Maréchal, M.; Vidal, S. Glycogen phosphorylase inhibitors: A patent review (2013–2015). Expert Opin. Ther. Pat. 2016, 26, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Chrysina, E.D.; Chajistamatiou, A.; Chegkazi, M. From structure-based to knowledge-based drug design through X-ray protein crystallography: Sketching glycogen phosphorylase binding sites. Curr. Med. Chem. 2011, 18, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Bichard, C.J.F.; Mitchell, E.P.; Wormald, M.R.; Watson, K.A.; Johnson, L.N.; Zographos, S.E.; Koutra, D.D.; Oikonomakos, N.G.; Fleet, G.W.J. Potent inhibition of glycogen phosphorylase by a spirohydantoin of glucopyranose: First pyranose analogues of hydantocidin. Tetrahedron Lett. 1995, 36, 2145–2148. [Google Scholar] [CrossRef]
- Goyard, D.; Kónya, B.; Chajistamatiou, A.S.; Chrysina, E.D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; et al. Glucose-derived spiro-isoxazolines are anti-hyperglycemic agents against type 2 diabetes through glycogen phosphorylase inhibition. Eur. J. Med. Chem. 2016, 108, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Mamais, M.; Degli Esposti, A.; Kouloumoundra, V.; Gustavsson, T.; Monti, F.; Venturini, A.; Chrysina, E.D.; Markovitsi, D.; Gimisis, T. A New Potent Inhibitor of Glycogen Phosphorylase Reveals the Basicity of the Catalytic Site. Chem. A Eur. J. 2017, 23, 8800–8805. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.; Rodríguez-Solla, H.; Soengas, R. Recent Advances in the Chemistry and Biology of Spirocyclic Nucleosides. In Topics in Heterocyclic Chemistry; Springer: Berlin, Heidelberg, Germany, 2019; pp. 1–43. [Google Scholar]
- Chatgilialoglu, C.; Ferreri, C.; Gimisis, T.; Roberti, M.; Balzarini, J.; De Clercq, E. Synthesis and Biological Evaluation of Novel 1’-Branched and Spiro-Nucleoside Analogues. Nucleosides Nucleotides Nucleic Acids 2004, 23, 1565–1581. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, O.; Gómez, E.; Toscano, R.; Salgado-Zamora, H.; Álvarez-Toledano, C. One-Pot Synthesis of Spirotetrahydrooxino [3,4-c] pyridines and Spirotetrahydrofuro [3,2-b] pyridin-2-ones via Lactonization from Activated Pyridyldihydroozaxoles and Bis(trimethylsilyl)ketene Acetals. Synthesis 2016, 48, 1371–1380. [Google Scholar] [CrossRef]
- Martín, A.; Suárez, E. Carbohydrate Spiro-heterocycles via Radical Chemistry. In Topics in Heterocyclic Chemistry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–54. [Google Scholar]
- Chatgilialoglu, C.; Gimisis, T.; Spada, G.P. C-1’ Radical-Based Approaches for the Synthesis of Anomeric Spironucleosides. Chem. A Eur. J. 1999, 5, 2866–2876. [Google Scholar] [CrossRef]
- Gimisis, T.; Chatgilialoglu, C.; Gimisis, T.; Castellari, C. A new class of anomeric spironucleosides. Chem. Commun. 1997, 2089–2090. [Google Scholar] [CrossRef]
- Liao, J.; Sun, J.; Yu, B. Effective synthesis of nucleosides with glycosyl trifluoroacetimidates as donors. Tetrahedron Lett. 2008, 49, 5036–5038. [Google Scholar] [CrossRef]
- Groziak, M.P.; Koohang, A. Facile addition of hydroxylic nucleophiles to the formyl group of uridine-6-carboxaldehydes. J. Org. Chem. 1992, 57, 940–944. [Google Scholar] [CrossRef]
- Tanaka, H.; Hayakawa, H.; Miyasaka, T. “Umpulong” of reactivity at the C-6 position of uridine: A simple and general method for 6-substituted uridines. Tetrahedron 1982, 38, 2635–2642. [Google Scholar] [CrossRef]
- Liu, H.-J.; Yip, J.; Shia, K.-S. Reductive cleavage of benzyl ethers with lithium naphthalenide. A convenient method for debenzylation. Tetrahedron Lett. 1997, 38, 2253–2256. [Google Scholar] [CrossRef]
- Wittenburg, E. Nucleoside und verwandte Verbindungen. VII. Alkylierung und Glykosidierung der Silyl-derivate 6-substituierter Uracile. Collect. Czechoslov. Chem. Commun. 1971, 36, 246–261. [Google Scholar] [CrossRef]
- Felczak, K.; Drabikowska, A.K.; Vilpo, J.A.; Kulikowski, T.; Shugar, D. 6-Substituted and 5,6-Disubstituted Derivatives of Uridine: Stereoselective Synthesis, Interaction with Uridine Phosphorylase, and In Vitro Antitumor Activity. J. Med. Chem. 1996, 39, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Warpehoski, M.A.; Chabaud, B.; Sharpless, K.B. Selenium dioxide oxidation of endocyclic olefins. Evidence for a dissociation-recombination pathway. J. Org. Chem. 1982, 47, 2897–2900. [Google Scholar] [CrossRef]
- Młochowski, J.; Brząszcz, M.; Giurg, M.; Palus, J.; Wójtowicz, H. Selenium-Promoted Oxidation of Organic Compounds: Reactions and Mechanisms. Eur. J. Org. Chem. 2003, 2003, 4329–4339. [Google Scholar] [CrossRef]
- Florent, J.-C.; Dong, X.; Gaudel, G.; Mitaku, S.; Monneret, C.; Gesson, J.-P.; Jacquesy, J.-C.; Mondon, M.; Renoux, B.; Andrianomenjanahary, S.; et al. Prodrugs of Anthracyclines for Use in Antibody-Directed Enzyme Prodrug Therapy. J. Med. Chem. 1998, 41, 3572–3581. [Google Scholar] [CrossRef]
- Francisco, C.G.; Freire, R.; Herrera, A.J.; Pérez-Martín, I.; Suárez, E. Intramolecular 1,5-versus 1,6-hydrogen abstraction reaction promoted by alkoxyl radicals in pyranose and furanose models. Tetrahedron 2007, 63, 8910–8920. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Beaton, J.M.; Geller, L.E.; Pechet, M.M. A New Photochemical Reaction 1. J. Am. Chem. Soc. 1961, 83, 4076–4083. [Google Scholar] [CrossRef]
- Kittaka, A.; Kato, H.; Tanaka, H.; Nonaka, Y.; Amano, M.; Nakamura, K.T.; Miyasaka, T. Face selective 6,1’-(1-oxo) ethano bridge formation of uracil nucleosides under hypoiodite reaction conditions. Tetrahedron 1999, 55, 5319–5344. [Google Scholar] [CrossRef]
- Oikonomakos, N.G.; Kontou, M.; Zographos, S.E.; Watson, K.A.; Johnson, L.N.; Bichard, C.J.F.; Fleet, G.W.J.; Acharya, K.R. N-acetyl-β-d-glucopyranosylamine: A potent T-state inhibitor of glycogen phosphorylase. A comparison with α-d-glucose. Protein Sci. 1995, 4, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Saheki, S.; Takeda, A.; Shimazu, T. Assay of inorganic phosphate in the mild pH range, suitable for measurement of glycogen phosphorylase activity. Anal. Biochem. 1985, 148, 277–281. [Google Scholar] [CrossRef]
- Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber. 1981, 114, 1234–1255. [Google Scholar] [CrossRef]
- Martin, J.L.; Veluraja, K.; Ross, K.; Johnson, L.N.; Fleet, G.W.J.; Ramsden, N.G.; Bruce, I.; Orchard, M.G.; Oikonomakos, N.G. Glucose analog inhibitors of glycogen phosphorylase: The design of potential drugs for diabetes. Biochemistry 1991, 30, 10101–10116. [Google Scholar] [CrossRef] [PubMed]
- Bokor, É.; Kun, S.; Docsa, T.; Gergely, P.; Somsák, L. 4(5)-Aryl-2-C-glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase. ACS Med. Chem. Lett. 2015, 6, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Grugel, H.; Minuth, T.; Boysen, M. Novel Olefin-Phosphorus Hybrid and Diene Ligands Derived from Carbohydrates. Synthesis 2010, 19, 3248–3258. [Google Scholar]
- Helmreich, E.; Cori, C.F. The role of adenylic acid in the activation of phsphorylase. Proc. Natl. Acad. Sci. USA 1964, 51, 131–138. [Google Scholar] [CrossRef]
Sample Availability: Samples of compounds 4, 6–9 are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathi, A.; Mamais, M.; Chrysina, E.D.; Gimisis, T. Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen Phosphorylase. Molecules 2019, 24, 2327. https://doi.org/10.3390/molecules24122327
Stathi A, Mamais M, Chrysina ED, Gimisis T. Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen Phosphorylase. Molecules. 2019; 24(12):2327. https://doi.org/10.3390/molecules24122327
Chicago/Turabian StyleStathi, Aggeliki, Michael Mamais, Evangelia D. Chrysina, and Thanasis Gimisis. 2019. "Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen Phosphorylase" Molecules 24, no. 12: 2327. https://doi.org/10.3390/molecules24122327
APA StyleStathi, A., Mamais, M., Chrysina, E. D., & Gimisis, T. (2019). Anomeric Spironucleosides of β-d-Glucopyranosyl Uracil as Potential Inhibitors of Glycogen Phosphorylase. Molecules, 24(12), 2327. https://doi.org/10.3390/molecules24122327