Next Article in Journal
Effects of Diethyl Phosphate, a Non-Specific Metabolite of Organophosphorus Pesticides, on Serum Lipid, Hormones, Inflammation, and Gut Microbiota
Previous Article in Journal
Hydroxytyrosol, Tyrosol and Derivatives and Their Potential Effects on Human Health
Article Menu
Issue 10 (May-2) cover image

Export Article

Open AccessArticle

Exploring African Medicinal Plants for Potential Anti-Diabetic Compounds with the DIA-DB Inverse Virtual Screening Web Server

1
Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, Hillcrest 0083, South Africa
2
Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain
*
Authors to whom correspondence should be addressed.
Molecules 2019, 24(10), 2002; https://doi.org/10.3390/molecules24102002
Received: 17 April 2019 / Revised: 2 May 2019 / Accepted: 4 May 2019 / Published: 24 May 2019
  |  
PDF [12620 KB, uploaded 28 May 2019]
  |  

Abstract

Medicinal plants containing complex mixtures of several compounds with various potential beneficial biological effects are attractive treatment interventions for a complex multi-faceted disease like diabetes. In this study, compounds identified from African medicinal plants were evaluated for their potential anti-diabetic activity. A total of 867 compounds identified from over 300 medicinal plants were screened in silico with the DIA-DB web server (http://bio-hpc.eu/software/dia-db/) against 17 known anti-diabetic drug targets. Four hundred and thirty compounds were identified as potential inhibitors, with 184 plants being identified as the sources of these compounds. The plants Argemone ochroleuca, Clivia miniata, Crinum bulbispermum, Danais fragans, Dioscorea dregeana, Dodonaea angustifolia, Eucomis autumnalis, Gnidia kraussiana, Melianthus comosus, Mondia whitei, Pelargonium sidoides, Typha capensis, Vinca minor, Voacanga africana, and Xysmalobium undulatum were identified as new sources rich in compounds with a potential anti-diabetic activity. The major targets identified for the natural compounds were aldose reductase, hydroxysteroid 11-beta dehydrogenase 1, dipeptidyl peptidase 4, and peroxisome proliferator-activated receptor delta. More than 30% of the compounds had five or more potential targets. A hierarchical clustering analysis coupled with a maximum common substructure analysis revealed the importance of the flavonoid backbone for predicting potential activity against aldose reductase and hydroxysteroid 11-beta dehydrogenase 1. Filtering with physiochemical and the absorption, distribution, metabolism, excretion and toxicity (ADMET) descriptors identified 28 compounds with favorable ADMET properties. The six compounds—crotofoline A, erythraline, henningsiine, nauclefidine, vinburnine, and voaphylline—were identified as novel potential multi-targeted anti-diabetic compounds, with favorable ADMET properties for further drug development. View Full-Text
Keywords: diabetes; anti-diabetic; DIA-DB; medicinal plants; in silico; virtual screening diabetes; anti-diabetic; DIA-DB; medicinal plants; in silico; virtual screening
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Pereira, A.S.; den Haan, H.; Peña-García, J.; Moreno, M.M.; Pérez-Sánchez, H.; Apostolides, Z. Exploring African Medicinal Plants for Potential Anti-Diabetic Compounds with the DIA-DB Inverse Virtual Screening Web Server. Molecules 2019, 24, 2002.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top