Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch–Alginate Beads
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Preparation of Spore Suspensions
2.3. Preparation of Starch–Alginate-Based Beads
2.4. Beads Size Measurement
2.5. Characterization
2.6. Rheological Properties
2.7. Release Measurements
2.7.1. Preparation of Metalaxyl Calibration Curve
2.7.2. Encapsulation of Spores and Metalaxyl
2.7.3. Entrapment Efficiency (%)
2.7.4. Release of Spores and Metalaxyl
2.7.5. Mathematical Modeling of Spores and Metalaxyl Release
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Formulation Parameters on Characteristics of Starch–Alginate Beads
3.2. Characterization
3.2.1. FTIR Spectroscopy Analysis
3.2.2. SEM Analysis
3.2.3. Thermogravimetric Analysis
3.2.4. Swelling Ratio
3.2.5. Rheological Properties
3.3. Release of Spores and Metalaxyl
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dorner, J.W. Biological Control of Aflatoxin Contamination in Corn Using a Nontoxigenic Strain of Aspergillus flavus. J. Food Protect. 2009, 72, 801–804. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Bruns, H.A.; Abel, C.A. Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol. Sci. Tech. 2006, 16, 437–449. [Google Scholar] [CrossRef]
- Honeycutt, E.W.; Benson, D.M. Formulation of Binucleate Rhizoctonia spp. and Biocontrol of Rhizoctonia solani on Impatiens. Plant Dis. 2002, 85, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Accinelli, C.; Sacca, M.L.; Abbas, H.K.; Zablotowicz, R.M.; Wilkinson, J.R. Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour. Technol. 2009, 100, 3997–4004. [Google Scholar] [CrossRef] [PubMed]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Deng, X.X.; Zhong, C.; Qiang, H.; Xiong, F.; Tang, C.H. Spray-drying microencapsulation of β-carotene by soy protein isolate and/or OSA-modified starch. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Domian, E.; Brynda-Kopytowska, A.; Cenkier, J.; Świrydow, E. Selected properties of microencapsulated oil powders with commercial preparations of maize OSA starch and trehalose. J. Food Eng. 2015, 152, 72–84. [Google Scholar] [CrossRef]
- Rong, L.; Shoemaker, C.F.; Xiaoqing, Y.; Fang, Z.; Qingrong, H. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J. Agric. Food Chem. 2013, 61, 1249–1257. [Google Scholar]
- Wang, S.; Chen, X.; Shi, M.; Zhao, L.; Wei, L.; Chen, Y.; Lu, M.; Wu, J.; Yuan, Q.; Yuan, L. Absorption of whey protein isolated (WPI)-stabilized β-Carotene emulsions by oppositely charged oxidized starch microgels. Food Res. Int. 2015, 67, 315–322. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, D.K.; Gupta, A. A study towards release dynamics of thiram fungicide from starch–alginate beads to control environmental and health hazards. J. Hazard. Mater. 2009, 161, 208–216. [Google Scholar] [CrossRef]
- Céspedes, F.F.; Sánchez, M.V.; García, S.P.; Pérez, M.F. Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere 2007, 69, 785–794. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin–epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38, 344–368. [Google Scholar] [CrossRef]
- Kruif, C.G.D.; Weinbreck, F.; Vries, R.D. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 2005, 9, 340–349. [Google Scholar] [CrossRef]
- Yi, L.; Fan, Y.; Li, X.; Zhang, X.; Abbas, S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll. 2014, 35, 305–314. [Google Scholar]
- Grillo, R.; Pereira, A.E.S.; Nishisaka, C.S.; Lima, R.D.; Oehlke, K.; Greiner, R.; Fraceto, L.F. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. J. Hazard. Mater. 2014, 278, 163–171. [Google Scholar] [CrossRef]
- Buss, E.A. Commercial Applications of Insecticides and Miticides in the Green Industry. Arbor Age 2014. [Google Scholar]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K.M. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Adv. Sci. Eng. Med. 2014, 6, 373–387. [Google Scholar] [CrossRef]
- Kumar, S.; Bhanjana, G.; Sharma, A.; Sidhu, M.C.; Dilbaghi, N. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydr. Polym. 2014, 101, 1061–1067. [Google Scholar] [CrossRef]
- Paradelo, M.; Soto-Gómez, D.; Pérez-Rodríguez, P.; Pose-Juan, E.; López-Periago, J.E. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media. J. Contam. Hydrol. 2014, 158, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Shi, T.; He, S.; Luo, L.; Liu, X.; Cao, Y. Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Micropor. Mesopor. Mat. 2013, 169, 1–6. [Google Scholar] [CrossRef]
- Zhang, W.; He, S.; Liu, Y.; Geng, Q.; Ding, G.; Guo, M.; Deng, Y.; Zhu, J.; Li, J.; Cao, Y. Preparation and characterization of novel functionalized prochloraz microcapsules using silica-alginate-elements as controlled release carrier materials. ACS Appl. Mater. Interfaces 2014, 6, 11783. [Google Scholar] [CrossRef]
- Nejla, C.; Tulay, T.; Christian, B.; Valérie, T.; David, R.; Gero, D.; Vincent, B. Slow complexation dynamics between linear short polyphosphates and polyallylamines: analogies with “layer-by-layer” deposits. Phys. Chem. Chem. Phys. 2012, 14, 3048–3056. [Google Scholar]
- Sonalika, S.; Manjaiah, K.M.; Datta, S.C.; Ahmed Shabeer, T.P.; Jitendra, K. Kinetics of metribuzin release from bentonite-polymer composites in water. J. Environ. Sci. Heal. B 2014, 49, 591–600. [Google Scholar]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Celis, R.; Gámiz, B.; Adelino, M.A.; Hermosín, M.C.; Cornejo, J. Environmental behavior of the enantiomers of the chiral fungicide metalaxyl in Mediterranean agricultural soils. Sci. Total Environ. 2013, 444, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Huang, J.; Zhang, X. Effects of engineered nanoparticles on the enantioselective transformation of metalaxyl agent and commercial metalaxyl in agricultural soils. J. Agric. Food Chem. 2016, 64, 7688–7695. [Google Scholar] [CrossRef] [PubMed]
- Gámiz, B.; Pignatello, J.J.; Cox, L.; Hermosín, M.C.; Celis, R. Environmental fate of the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar: An enantioselective study. Sci. Total. Environ. 2015, 541, 776. [Google Scholar] [CrossRef] [PubMed]
- Premasis Sukul, M.S. Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere 2001, 45, 941–947. [Google Scholar]
- Accinelli, C.; Abbas, H.K.; Little, N.S.; Kotowicz, J.K.; Shier, W.T. Biological control of aflatoxin production in corn using non-aflatoxigenic Aspergillus flavus administered as a bioplastic-based seed coating. Crop. Prot. 2018, 107, 87–92. [Google Scholar] [CrossRef]
- Celis, R.; Facenda, G.; Hermosin, M.C.; Cornejo, J. Assessing factors influencing the release of hexazinone from clay-based formulations. J. Environ. Anal. Chem. 2005, 85, 1153–1164. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Martin, J.C.; Oliphant, A.J.; Doerr, P.A.; Xu, J.F.; Deborn, K.M.; Chen, C.; Sun, L. Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass. ACS Sustain. Chem. Eng. 2013, 1, 254–259. [Google Scholar] [CrossRef]
- Hemvichian, K.; Chanthawong, A.; Suwanmala, P. Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiat. Phys. Chem. 2014, 103, 167–171. [Google Scholar] [CrossRef]
- Accinelli, C.; Mencarelli, M.; Saccà, M.L.; Vicari, A.; Abbas, H.K. Managing and monitoring of Aspergillus flavus in corn using bioplastic-based formulations. Crop. Prot. 2012, 32, 30–35. [Google Scholar] [CrossRef]
- Santos, G.F.D.; Locatelli, G.O.; Coêlho, D.A.; Botelho, P.S.; Amorim, M.S.D.; Vasconcelos, T.C.L.D.; Bueno, L.A. Factorial design, preparation and characterization of new beads formed from alginate, polyphosphate and glycerol gelling solution for microorganism microencapsulation. J. Sol-Gel Sci. Technol. 2015, 75, 345–352. [Google Scholar] [CrossRef]
- Chen, X.J.C. Metallization encapsulation, controlled release and tobacco field application of metalaxyl. J. Agric. Sci. 2013, 5, 114–116. [Google Scholar]
- Roy, A.; Bajpai, J.; Bajpai, A.K. Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr. Polym. 2009, 76, 222–231. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, sphe. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Jay, S.M.; Saltzman, W.M. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J. Control. Release 2009, 134, 26–34. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, L.; Qin, S.; Li, C. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 2012, 39, 317. [Google Scholar] [CrossRef]
- Evvie, C.; Sivapriya, K.; Subramanian, S.; Chandrasekaran, S. Rice husk filtrate as a nutrient medium for the growth of Desulfotomaculum nigrificans: Characterisation and sulfate reduction studies. Bioresour. Technol. 2005, 96, 1880–1888. [Google Scholar]
- Singh, B.; Sharma, D.K.; Kumar, R.; Gupta, A. Controlled release of thiram from neem-alginate-clay based delivery systems to manage environmental and health hazards. Appl. Clay Sci. 2010, 47, 384–391. [Google Scholar] [CrossRef]
- Kök, F.N.; Wilkins, R.M.; Cain, R.B.; Arica, M.Y.; Alaeddinoğlu, G.; Hasirci, V. Controlled release of aldicarb from lignin loaded ionotropic hydrogel microspheres. J. Microencapsul. 1999, 16, 613–623. [Google Scholar] [PubMed]
- Singh, B.; Sharma, D.K.; Kumar, R.; Gupta, A. Controlled release of the fungicide thiram from starch–alginate–clay based formulation. Appl. Clay Sci. 2009, 45, 76–82. [Google Scholar] [CrossRef]
- Amit, P.; Datta, M. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar]
- Wang, Y.; Chao, L.; Peng, L.; Ahmed, Z.; Ping, X.; Bai, X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr. Polym. 2010, 82, 895–903. [Google Scholar] [CrossRef]
- Laurienzo, P.; Malinconico, M.; Motta, A.; Vicinanza, A. Synthesis and characterization of a novel alginate–poly(ethylene glycol) graft copolymer. Carbohydr. Polym. 2005, 62, 274–282. [Google Scholar] [CrossRef]
- Petrović, Z.S.; Javni, I.; Waddon, A.; Bánhegyi, G. Structure and properties of polyurethane–silica nanocomposites. J. Appl. Polym. Sci. 2000, 76, 133–151. [Google Scholar] [CrossRef]
- Chang, J.H.; An, Y.U.; Cho, D.; Giannelis, E.P. Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 2003, 44, 3715–3720. [Google Scholar] [CrossRef]
- Bharadwaj, R.K.; Mehrabi, A.R.; Hamilton, C.; Trujillo, C.; Murga, M.; Fan, R.; Chavira, A.; Thompson, A.K. Structure-property relationships in cross-linked polyester-clay nanocomposites. Polymer 2002, 43, 3699–3705. [Google Scholar] [CrossRef]
- Riyajan, S.A. A Novel Hybrid 2,4-Dichlorophenoxy Acetate Bead from Modified Cassava Starch and Sodium Alginate with Modified Natural Rubber Coating. J. Polym. Environ. 2018, 26, 1950–1961. [Google Scholar] [CrossRef]
- Rui, L.; Liu, M.; Lan, W. Controlled release NPK compound fertilizer with the function of water retention. React. Funct. Polym. 2007, 67, 769–779. [Google Scholar]
- Huaping, T.; Peter Rubin, J.; Marra, K.G. Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous Diels-Alder chemistry. Macromol. Rapid Commun. 2011, 32, 905–911. [Google Scholar]
- Huang, A.; Li, X.; Liang, X.; Zhang, Y.; Hu, H.; Yin, Y.; Huang, Z. Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate. Polymers 2018, 10, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Jianfa, L.; Yimin, L.; Huaping, D. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations. J. Agric. Food Chem. 2008, 56, 1336–1342. [Google Scholar]
- Gerstl, Z.; Nasser, A.; Mingelgrin, U. Controlled Release of Pesticides into Water from Clay−Polymer Formulations. J. Agric. Food Chem. 1998, 46, 3797–3802. [Google Scholar] [CrossRef]
- Garrido-Herrera, F.J.; Gonzalez-Pradas, E.; Fernandez-Perez, M. Controlled release of isoproturon, imidacloprid, and cyromazine from alginate-bentonite-activated carbon formulations. J. Agric. Food Chem. 2006, 54, 10053–10060. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Starch (% w/v) | Alginate (% w/v) | Kaolin (% w/v) | Rice Husk Powder (% w/v) | Beads Weight (g) |
---|---|---|---|---|---|
SA | 10 | 1.5 | - | - | 1.76 |
SAK1 | 10 | 1.5 | 1 | - | 2.16 |
SAK2 | 10 | 1.5 | 2 | - | 2.53 |
SAK3 | 10 | 1.5 | 3 | - | 2.73 |
SAK4 | 10 | 1.5 | 4 | - | 3.00 |
SAH1 | 10 | 1.5 | - | 1 | 2.17 |
SAH2 | 10 | 1.5 | - | 2 | 2.60 |
SAH3 | 10 | 1.5 | - | 3 | 2.57 |
SAH4 | 10 | 1.5 | - | 4 | 2.78 |
Sample | Bead Diameter (mm) | Entrapment Efficiency of Spores (%) | Entrapment Efficiency of Metalaxyl (%) |
---|---|---|---|
SA | 1.95 ± 0.10 | 61.75 ± 1.25 | 79.57 ± 1.66 |
SAK1 | 2.02 ± 0.06 a,* | 48.56 ± 2.33 c | 86.63 ± 1.78 a |
SAK2 | 2.03 ± 0.08 a | 63.17 ± 0.84 a | 76.39 ± 3.32 b |
SAK3 | 2.10 ± 0.07 a | 44.31 ± 3.03 c | 74.89 ± 2.85 b |
SAK4 | 2.10 ± 0.07 a | 56.34 ± 2.64 b | 77.58 ± 1.96 b |
SAH1 | 2.08 ± 0.07 c | 76.09 ± 1.88 c | 73.34 ± 1.67 b |
SAH2 | 2.19 ± 0.04 b,c | 84.55 ± 1.56 a | 85.05 ± 3.48 a |
SAH3 | 2.27 ± 0.06 a,b | 67.40 ± 2.54 b | 64.00 ± 2.59 c |
SAH4 | 2.37 ± 0.09 a | 83.42 ± 2.48 a | 67.56 ± 2.63 c |
Formulation | Equation | n | K | Mechanism |
---|---|---|---|---|
SA | Y = 0.2395X − 1.4731 | 0.24 | 0.23 | Normal Fickian |
SAK1 | Y = 0.2468X − 1.5782 | 0.25 | 0.21 | Normal Fickian |
SAK2 | Y = 0.2000X − 1.4683 | 0.20 | 0.23 | Normal Fickian |
SAK3 | Y = 0.1904X − 1.4312 | 0.19 | 0.24 | Normal Fickian |
SAK4 | Y = 0.2121X − 1.6105 | 0.21 | 0.20 | Normal Fickian |
SAH1 | Y = 0.3075X − 1.9013 | 0.30 | 0.15 | Normal Fickian |
SAH2 | Y = 0.2247X − 1.5118 | 0.22 | 0.22 | Normal Fickian |
SAH3 | Y = 0.2146X − 1.4968 | 0.21 | 0.22 | Normal Fickian |
SAH4 | Y = 0.1512X − 1.2319 | 0.15 | 0.29 | Normal Fickian |
Formulation | Equation | n | K (×10−3) | Mechanism |
---|---|---|---|---|
SA | Y = 0.9011X − 5.4281 | 0.90 | 4.39 | Non-Fickian |
SAK1 | Y = 0.8969X − 5.4140 | 0.89 | 4.45 | Non-Fickian |
SAK2 | Y = 0.9027X − 5.1622 | 0.90 | 5.73 | Non-Fickian |
SAK3 | Y = 1.0009X − 5.9081 | 1.00 | 2.72 | Case II |
SAK4 | Y = 1.1495X − 6.7615 | 1.15 | 1.16 | Case II |
SAH1 | Y = 0.8603X − 4.6581 | 0.86 | 9.48 | Non-Fickian |
SAH2 | Y = 0.3416X − 2.3020 | 0.34 | 100.04 | Normal Fickian |
SAH3 | Y = 1.0525X − 5.7209 | 1.05 | 3.28 | Case II |
SAH4 | Y = 1.0473X − 6.0509 | 1.05 | 2.36 | Case II |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Dou, J.; Wu, Z.; Yin, D.; Wu, W. Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch–Alginate Beads. Molecules 2019, 24, 1858. https://doi.org/10.3390/molecules24101858
Feng J, Dou J, Wu Z, Yin D, Wu W. Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch–Alginate Beads. Molecules. 2019; 24(10):1858. https://doi.org/10.3390/molecules24101858
Chicago/Turabian StyleFeng, Jiachang, Jianpeng Dou, Zidan Wu, Dongxue Yin, and Wenfu Wu. 2019. "Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch–Alginate Beads" Molecules 24, no. 10: 1858. https://doi.org/10.3390/molecules24101858
APA StyleFeng, J., Dou, J., Wu, Z., Yin, D., & Wu, W. (2019). Controlled Release of Biological Control Agents for Preventing Aflatoxin Contamination from Starch–Alginate Beads. Molecules, 24(10), 1858. https://doi.org/10.3390/molecules24101858