Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos)
Abstract
:1. Introduction
2. Bioactive Compounds of European Cranberry
2.1. Phenolic Compounds of European Cranberry
2.1.1. Phenolic Acids
2.1.2. Flavonoids
2.1.3. Anthocyanins
2.1.4. Proanthocyanidins
3. Antioxidant Activity of Cranberry Fruit
4. Biological Activities of European Cranberry
4.1. Antiinflammatory Effect
4.2. Antimicrobial and Antiviral Activity of Cranberry Fruit
4.3. Urinary Tract Protection
4.4. Cardioprotective Effect
4.5. Anticancer Effect
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Mabberley, D.J. The Plant-Book: A Portable Dictionary of the Vascular Plants, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; p. 740. [Google Scholar]
- Brown, P.N.; Turi, C.E.; Shipley, P.R.; Murch, S.J. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med. 2012, 78, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Jacquemart, A.L. Vaccinium oxycoccos L. (Oxycoccos palustris Pers.) and Vaccinium microcarpum (Turcz. ex Rupr.) schmalh. (Oxycoccos microcarpus Turcz. ex Rupr.). J. Ecol. 1997, 85, 381–396. [Google Scholar] [CrossRef]
- Hummer, K.E.; Sabitov, A.; Cherbukin, P.; Vorsa, N. Vaccinium from primorsky, khabarovsk, amursky and the sakhalin territories, russia. Acta Hort. 2006, 715, 91–96. [Google Scholar] [CrossRef]
- Côté, J.; Caillet, S.; Doyon, G.; Sylvain, J.-F.; Lacroix, M. Analyzing cranberry bioactive compounds. Crit. Rev. Food Sci. Nutr. 2010, 50, 872–888. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Daubaras, R.; Paulauskas, A.; Žukauskienė, J.; Zych, M. Morphological and genetic diversity of European cranberry (Vaccinium oxycoccos L., Ericaceae) clones in Lithuanian reserves. Acta Soc. Bot. Pol. 2013, 82, 211–217. [Google Scholar]
- Česonienė, L.; Daubaras, R.; Areškevičiūtė, J.; Viškelis, P. Evaluation of Morphological Peculiarities, Amount of Total Phenolics and Anthocyanins in Berries of European Cranberry (Oxycoccus palustris). Balt. For. 2006, 12, 59–63. [Google Scholar]
- Adamczak, A.; Gąbka, M.; Buchwald, W. Fruit yield of European cranberry (Oxycoccus palustris Pers.) in different plant communities of peatlands (northern Wielkopolska, Poland). Acta Agrobot. 2012, 62, 97–105. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Tech. 2018, 55, 62–71. [Google Scholar] [CrossRef]
- Kennedy, D.A.; Lupattelli, A.; Koren, G.; Nordeng, H. Herbal medicine use in pregnancy: Results of a multinational study. BMC Complement. Altern. Med. 2013, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Netto, C.C. Cranberry and its phytochemicals: A review of in vitro anticancer studies. J. Nutr. 2007, 137, 186–193. [Google Scholar] [CrossRef]
- Ehala, S.; Vaher, M.; Kaljurand, M. Characterization of phenolic profiles of Northern European berries by capillary electrophoresis and determination of their antioxidant activity. J. Agric. Food Chem. 2005, 53, 6484–6490. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Daubaras, R.; Jasutiene, I.; Miliauskiene, I.; Zych, M. Investigations of anthocyanins, organic acids, and sugars show great variability in nutritional and medicinal value of European cranberry (Vaccinium oxycoccos) fruit. J. Appl. Bot. Food Qual. 2015, 88, 295–299. [Google Scholar]
- Jensen, H.D.; Krogfelt, K.A.; Cornett, C.; Hansen, S.H.; Christensen, S.B. Hydrophilic carboxylic acids and iridoid glycosides in the juice of American and European cranberries (Vaccinium macrocarpon and V. oxycoccos), lingonberries (V. vitis-idaea), and blueberries (V. myrtillus). J. Agric. Food Chem. 2002, 50, 6871–6874. [Google Scholar] [CrossRef] [PubMed]
- Povilaityté, V.; Budriuniené, D.; Rimkiené, S.; Viškelis, P. Investigation of Vaccinium Macrocarpon Ait. fruits chemical composition. Dendrol. Lith. 1998, 4, 55–62. [Google Scholar]
- Tikuma, B.; Liepniece, M.; Sterne, D.; Abolins, M.; Seglina, D.; Krasnova, I. Preliminary Results of Biochemical Composition of Two Cranberry Species Grown in Latvia. Acta Hortic. 2014, 1017, 209–214. [Google Scholar] [CrossRef]
- Viskelis, P.; Rubinskienė, M.; Jasutienė, I.; Sarkinas, A.; Daubaras, R.; Cesoniene, L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009, 74, C157–C161. [Google Scholar] [CrossRef]
- Klavins, L.; Kviesis, J.; Steinberga, I.; Klavina, L. Gas chromatography-mass spectrometry study of lipids in northern berries. Agron. Res. 2016, 14, 1328–1346. [Google Scholar]
- Lyutikova, M.N.; Turov, Y.P. Chemical constituents from wild Oxycoccus palustris fruit from north Tyumen oblast. Chem. Nat. Comp. 2011, 46, 848–851. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.A.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, A.S.; Ehlers, P.I.; Siltari, A.; Turpeinen, A.M.; Vapaatalo, H.; Korpela, R. Lingonberry, cranberry and blackcurrant juices affect mRNA expressions of inflammatory and atherothrombotic markers of SHR in a long-term treatment. J. Funct. Foods 2012, 4, 496–503. [Google Scholar] [CrossRef]
- Česonienė, L.; Jasutiene, I.; Šarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina (Kaunas) 2009, 45, 992–999. [Google Scholar] [CrossRef]
- Česonienė, L.; Daubaras, R.; Jasutiene, I.; Vencloviene, J.; Miliauskiene, I. Evaluation of the Biochemical Components and Chromatic Properties of the Juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Plant Foods Hum. Nutr. 2011, 66, 238–244. [Google Scholar] [CrossRef]
- Koponen, J.M.; Happonen, A.M.; Mattila, P.H.; Törrönen, A.R. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. J. Agric. Food Chem. 2007, 55, 1612–1619. [Google Scholar] [CrossRef]
- Ogawa, K.; Sakakibara, H.; Iwata, R.; Ishii, T.; Sato, T.; Goda, T.; Shimoi, K.; Kumazawa, S. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J. Agric. Food Chem. 2008, 56, 4457–4462. [Google Scholar] [CrossRef]
- Borowska, E.J.; Mazur, B.; Kopciuch, R.G.; Buszewski, B. Polyphenol, anthocyanin and resveratrol mass fractions and antioxidant properties of cranberry cultivars. Food Tech. Biotech. 2009, 47, 56–61. [Google Scholar]
- Gniewosz, M.; Stobnicka, A. Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. J. Food Safety 2018, 38, 1–11. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.; Kamal-Eldin, A.; Mattila, P.H.; Gonzalez-Paramas, A.; Törrönen, A.R. Distribution and contents of phenolic compounds in eighteen Scandinavian berry species. J. Agric. Food Chem. 2004, 52, 4477–4486. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Törrönen, A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000, 33, 517–524. [Google Scholar] [CrossRef]
- Mazur, B.; Borowska, E.J. Produkty z owoców żurawiny błotnej-zawartość związków fenolowych i właściwości przeciwutleniające. Bromat. Chem. Toksykol. 2007, 40, 239–243. [Google Scholar]
- Kylli, P.; Nohynek, L.; Puupponen-Pimiä, R.; Westerlund-Wikström, B.; Leppänen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Taruscio, T.G.; Barney, D.L.; Exon, J. Content and profile of flavonoid and phenolic acid compounds in conjuction with the antioxidant capacity for a variety of Northwest Vaccinium berries. J. Agric. Food Chem. 2004, 52, 3169–3176. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jin, D.Q.; Beak, S.M.; Lee, E.S.; Kim, J.A. Inhibition of UVA modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human kerotinocytes. Eur. J. Pharmacol. 2003, 476, 173–178. [Google Scholar]
- Ramachandran, S.; Prasad, N.R. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem. Biol. Interact. 2008, 176, 99–107. [Google Scholar] [CrossRef]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Singh, A.P.; Wilson, T.; Kalk, A.J.; Cheong, J.; Vorsa, N. Isolation of Specific Cranberry Flavonoids for Biological Activity Assessment. Food Chem. 2009, 116, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R.R. HPLC method for screening of flavonoids and phenolic acids in berries. J. Sci. Food. Agric. 1998, 77, 543–551. [Google Scholar] [CrossRef]
- Bilyk, A.; Sapers, G.M. Varietal differences in the quercetin, kaempferol, and myricetin contents of highbush blueberry, cranberry, and thornless blackberry fruits. J. Agric. Food Chem. 1986, 34, 585–588. [Google Scholar] [CrossRef]
- Ermis, E.; Hertel, C.; Schneider, C.; Carle, R.; Stintzing, F.; Schmidt, H. Characterization of in vitro antifungal activities of small and American cranberry (Vaccinium oxycoccos L. and V. macrocarpon Aiton) and lingonberry (Vaccinium vitis-idaea L.) concentrates in sugar reduced fruit spreads. Int. J. Food Microbiol. 2015, 204, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Adamczak, A.; Buchwald, W.; Kozłowski, J.; Mielcarek, S. The effect of thermal and freeze drying on the content of organic acids and flavonoids in fruit of European cranberry (Oxycoccus palustris Pers.). Herba Pol. 2009, 55, 94–102. [Google Scholar]
- Bylka, W.; Witkowska-Banaszczak, E. Zawartość flawonoidów w owocach żurawiny błotnej i wielkoowocowej. Herba Pol. 2007, 53, 122. Available online: https://www.infona.pl/resource/bwmeta1.element.agro-article-67ad5d42-126d-4b3a-8cff-ca31b08d4425 (accessed on 14 December 2018).
- Abascal, K.; Ganora, L.; Yarnell, E. The effect of freeze-drying and its implications for botanical medicine: A review. Phytother. Res. 2005, 19, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.; Heinämäki, J.; Ollilainen, V.; Heinonen, M. Berry anthocyanins: Isolation, analysis and antioxidant activities. J. Sci. Food Agric. 2003, 83, 1403–1411. [Google Scholar] [CrossRef]
- Wang, S.Y.; Stretch, A.W. Antioxidant capacity in cranberry is influenced by cultivar and storage temperature. J. Agric. Food Chem. 2001, 49, 969–974. [Google Scholar] [CrossRef]
- Andersen, Y.M. Anthocyanins in Fruits of Vaccinium oxycoccus L. (Small Cranberry). Food Sci. 1989, 54, 383–384. [Google Scholar] [CrossRef]
- Huopalahti, R.; Jarvenpaa, E.; Katina, K. A novel solid-phase extraction-HPLC method for the analysis of anthocyanin and organic acid composition of finnish cranberry. J. Liq. Chrom. Relat. Tech. 2000, 23, 2695–2701. [Google Scholar] [CrossRef]
- Brown, P.N.; Murch, S.J.; Shipley, P. Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. J. Agric. Food Chem. 2012, 60, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Vorsa, N.; Polashock, J.J. Alteration of anthocyanin glycosyla-tion in cranberry through interspecific hybridization. J. Am. Soc. Hortic. Sci. 2005, 130, 711–715. [Google Scholar]
- Määttä-Riihinen, K.R.; Kahkonen, M.P.; Torronen, A.R.; Heinonen, I.M. Catechins and proanthocyanidins in berries of Vaccinium species and their antioxidant activity. J. Agric. Food Chem. 2005, 53, 8485–8491. [Google Scholar] [CrossRef] [PubMed]
- Jungfer, E.; Zimmermann, B.F.; Ruttkat, A.; Galensa, R. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects. J. Agric. Food Chem. 2012, 60, 9688–9696. [Google Scholar] [CrossRef] [PubMed]
- Boudesocque, L.; Dorat, J.; Pothier, J.; Gueiffier, A.; Enguehard-Gueiffier, C. High performance thin layer chromatography-densitometry: A step further for quality control of cranberry extracts. Food Chem. 2013, 139, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Canja, C.M.; Lupu, M.I.; Boeriu, A.E.; Mărgean, A.; Măzărel, A. The Impact of Cranberry (Vaccinium Oxycoccos) Bioactive Compounds on Contemporary Diet, Proceedings of COMAT 2016, Braşov, Romania, 24–25 November 2016; Transilvania University Press of Braşov: Braşov, Romania, 2016; pp. 358–362. ISSN 1844-9336. [Google Scholar]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Chen, H.; Camp, M.J.; Ehlenfeldt, M.K. Flavonoid constituents and their contribution to antioxidant activity in cultivars and hybrids of rabbiteye blueberry (Vaccinium ashei Reade). Food Chem. 2012, 132, 855–864. [Google Scholar] [CrossRef]
- Tsuda, H.; Kunitake, H.; Kawasaki-Takaki, R.; Nishiyama, K.; Yamasaki, M.; Komatsu, H.; Yukizaki, C. Antioxidant activities and anti-cancer cell proliferation properties of Natsuhaze (Vaccinium oldhamii Miq.), Shashanbo (V. bracteatum Thunb.) and Blueberry cultivars. Plants 2013, 2, 57–71. [Google Scholar] [CrossRef]
- Yao, Y.; Vieira, A. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity. Neurotoxicology 2007, 28, 93–100. [Google Scholar] [CrossRef]
- Porter, M.L.; Krueger, C.G.; Wiebe, D.A.; Cunningham, D.G.; Reed, J.D. Cranberry proanthocyanidins associate with low-density lipoprotein and inhibit in vitro Cu2+-induced oxidation. J. Sci. Food Agric. 2001, 81, 1306–1313. [Google Scholar] [CrossRef]
- Youdim, K.A.; McDonald, J.; Kalt, W.; Joseph, J.A. Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 2002, 13, 282–288. [Google Scholar] [CrossRef]
- Denev, P.; Lojek, A.; Ciz, M.; Kratchanova, M. Antioxidant activity and polyphenol content of Bulgarian fruits. Bulg. J. Agric. Sci. 2013, 19, 22–27. [Google Scholar]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Raghavan, S.; Richards, M.P. Comparison of solvent and microwave extracts of cranberry press cake on the inhibition of lipid oxidation in mechanically separated Turkey. Food Chem. 2007, 102, 818–826. [Google Scholar] [CrossRef]
- Tyburcy, A.; Ścibisz, I.; Rostek, E.; Pasierbiewicz, A.; Florowski, T. Antioxidative properties of cranberry and rose juices in meat products made of defrosted meat ([Przeciwutleniające właściwości soków z żurawiny i z róży w produktach z mięsa rozmrożonego]). Żywność Nauka Technologia Jakość 2014, 5, 72–84. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ma, Y.; Pagliari, L.J.; Perlman, H.; Yu, C.; Lin, A.; Pope, R.M. TNF-alpha-induced apoptosis of macrophages following inhibition of NF-kappa B: A central role for disruption of mitochondria. J. Immunol. 2004, 172, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kong, H.; Choi, B.; Yang, Y.; Kim, Y.; Lim, M.J.; Neckers, L.; Jung, Y. Metabolic and pharmacological properties of rutin, a dietary quercetin glycoside, for treatment of inflammatory bowel disease. Pharm. Res. 2005, 22, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Toivanen, M.; Ryynänen, A.; Huttunen, S.; Duricová, J.; Riihinen, K.; Törrönen, R.; Lapinjoki, S.; Tikkanen-Kaukanen, C. Binding of Neisseria meningitidis pili to berry polyphenolic fractions. J. Agric. Food Chem. 2009, 57, 3120–3127. [Google Scholar] [CrossRef] [PubMed]
- Toivanen, M.; Huttunen, S.; Duricová, J.; Soininen, P.; Laatikainen, R.; Loimaranta, V.; Haataja, S.; Finne, J.; Lapinjoki, S.; Tikkanen-Kaukanen, C. Screening of binding activity of Streptococcus pneumoniae, Streptococcus agalactiae and Streptococcus suis to berries and juices. Phytother. Res. 2010, 24, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Lian, P.Y.; Maseko, T.; Rhee, M.; Ng, K. The antimicrobial effects of cranberry against Staphylococcus aureus. Food Sci. Technol. Int. 2012, 18, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; McGivney, C.; Tadepalli, S.; Sun, X.; Wu, V.C.H. The effect of American cranberry (Vaccinium macrocarpon) constituents on the growth inhibition, membrane integrity, and injury of Escherichia coli O157:H7 and Listeria monocytogenes in comparison to Lactobacillus rhamnosus. Food Microbiol. 2013, 34, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.; Törrönen, R.; Mattila, P. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, S.; Toivanen, M.; Arkko, S.; Ruponen, M.; Tikkanen-Kaukanen, C. Inhibition activity of wild berry juice fractions against Streptococcus pneumoniae binding to human bronchial cells. Phytother. Res. 2011, 25, 122–127. [Google Scholar] [CrossRef]
- Lai, Y.F.; Yinrong, L.; Howell, A.B.; Vorsa, N. The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic pfimbriated Escherichia coli in vitro. Phytochemistry 2000, 54, 173–181. [Google Scholar]
- Sekizawa, H.; Ikuta, K.; Mizuta, K.; Takechi, S.; Suzutani, T. Relationship between polyphenol content and anti-influenza viral effects of berries. J. Sci. Food Agric. 2013, 93, 2239–2241. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, M.; Saiedi, M. Anti-carcinoma activity of Vaccinium oxycoccos. Pharm. Lett. 2017, 9, 74–79. [Google Scholar]
- Ranfaing, J.; Dunyach, R.C.; Louis, L.; Lavigne, J.P.; Sotto, A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Eschericia coli. Sci. Rep. 2018, 8, 10706. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Dwivedi, M.; Mahdi, A.A.; Nagana Gowda, G.A.; Khetrapal, C.L.; Bhandari, M. Inhibition of adherence of multi-drug resistant E. coli by proanthocyanidin. Urol. Res. 2012, 40, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Vasileiou, I.; Katsargyris, A.; Theocharis, S.; Giaginis, C. Current clinical status on the preventive effects of cranberry consumption against urinary tract infections. Nutr. Res. 2013, 33, 595–607. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; Howell, A.B.; MacKinnon, S.L.; Goldman, I.L. Selected bioactivities of Vaccinium berries and other fruit crops in relation to their phenolic contents. J. Sci. Food Agric. 2007, 87, 2279–2285. [Google Scholar] [CrossRef]
- Davidson, E.; Zimmermann, B.F.; Jungfer, E.; Chrubasik-Hausmann, S. Prevention of urinary tract infections with vaccinium products. Phytother. Res. 2014, 28, 465–470. [Google Scholar] [CrossRef]
- Shamseer, L.; Vohra, S. Complementary, holistic, and integrative medicine: Cranberry. Pediat. Rev. 2007, 28, e43–e45. [Google Scholar] [CrossRef]
- Kontiokari, T.; Sundqvist, K.; Nuutinen, M.; Pokka, T.; Koskela, M.; Uhari, M. Randomized trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. Br. Med. J. 2001, 322, 1571–1573. [Google Scholar] [CrossRef]
- Kontiokari, T.; Laitinen, J.; Järvi, L.; Pokka, T.; Sundqvist, K.; Uhari, M. Dietary factors protecting women from urinary tract infection. Am. J. Clin. Nutr. 2003, 77, 600–604. [Google Scholar] [CrossRef][Green Version]
- Jepson, R.G.; Mihaljevic, L.; Craig, J. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 2004, 2, CD001321. [Google Scholar]
- Jepson, R.G.; Craig, J.C. A systematic review of the evidence for cranberries and blueberries in UTI prevention. Mol. Nutr. Food Res. 2007, 51, 738–745. [Google Scholar] [CrossRef] [PubMed]
- Jepson, R.G.; Williams, G.; Craig, J.C. Cranberries for preventing urinary tract infections. Cochrane Database Syst. Rev. 2012, 10, CD001321. [Google Scholar] [CrossRef] [PubMed]
- Liska, D.J.; Kern, H.J.; Maki, K.C. Cranberries and Urinary tract infections: How can the same evidence lead to conflicting advice? Adv. Nutr. 2016, 7, 498–506. [Google Scholar] [CrossRef]
- Kivimäki, A.S.; Ehlers, P.I.; Turpeinen, A.M.; Vapaatalo, H.; Korpela, R. Lingonberry juice improves endothelium-dependent vasodilatation of mesenteric arteries in spontaneously hypertensive rats in a long-term intervention. J. Funct. Foods 2011, 3, 267–274. [Google Scholar] [CrossRef]
- Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [Google Scholar] [CrossRef]
- Nowack, R. Cranberry juice—A well-characterized folk-remedy against bacterial urinary tract infection. Wien Med. Wochenschr. 2007, 157, 325–330. [Google Scholar] [CrossRef]
- Nowack, R.; Schmitt, W. Cranberry juice for prophylaxis of urinary tract infections—Conclusions from clinical experience and research. Phytomedicine 2008, 15, 653–667. [Google Scholar] [CrossRef]
- Guay, D.R. Cranberry and urinary tract infections. Drugs 2009, 69, 775–807. [Google Scholar] [CrossRef]
- Asma, B.; Vicky, L.; Stephanie, D.; Yves, D.; Amy, H.; Sylvie, D. Standardised high dose versus low dose cranberry Proanthocyanidin extracts for the prevention of recurrent urinary tract infection in healthy women [PACCANN]: A double blind randomised controlled trial protocol. BMC Urol. 2018, 18, 29. [Google Scholar] [CrossRef]
- Hisano, M.; Bruschini, H.; Nicodemo, A.C.; Srougi, M. Cranberries and lower urinary tract infection prevention. Clinics (Sao Paulo) 2012, 67, 661–668. [Google Scholar] [CrossRef]
- Abascal, K.; Yarnell, E. Botanical medicine for cystitis. Altern. Complement. Ther. 2008, 14, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Howell, A.B.; Reed, J.D.; Krueger, C.G.; Winterbottom, R.; Cunningham, D.G.; Leahy, M. A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 2005, 66, 2281–2291. [Google Scholar] [CrossRef]
- Ermel, G.; Georgeault, S.; Inisan, C.; Besnard, M. Inhibition of adhesion of uropathogenic Escherichia coli bacteria to uroepithelial cells by extracts from cranberry. J. Med. Food 2012, 15, 126–134. [Google Scholar] [CrossRef]
- Hidalgo, M.; Martin-Santamaria, S.; Recio, I.; Sanchez-Moreno, C.; de Pascual-Teresa, B.; Rimbach, G.; de Pascual-Teresa, S. Potential anti-inflammatory, anti-adhesive, anti/estrogenic, and angiotensin-converting enzyme inhibitory activities of anthocyanins and their gut metabolites. Genes Nutr. 2012, 7, 295–306. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Howell, A.B. Update on health benefits of cranberry and blueberry. Acta Hort. 2009, 810, 779–784. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Etherton, P.K.; Howel, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Ray, A.S.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- Vattem, D.A.; Lin, Y.-T.; Ghaedian, R.; Shetty, K. Cranberry synergies for dietary management of Helicobacter pylori infections. Process. Biochem. 2005, 40, 1583–1592. [Google Scholar] [CrossRef]
- Banaszczak, E.W.; Sroka, E.S.; Bylka, W. Comparison of the contents of selected phenolic componds in the fruit of Vaccinium macrocarpon Ait. and Vaccinium oxycoccos L. Herba Polonica 2010, 56, 38–46. [Google Scholar]
Phenolic Compounds | Content (mg/100 g fw or as Mentioned in the Brackets) | References | |
---|---|---|---|
Phenolic acids | Benzoic acid | 99.6–214.6 | Stobnicka and Gniewosz [11] |
p-coumaric acid | 2.0–78.0 | Stobnicka and Gniewosz [11], Ehala et al. [15] | |
Chlorogenic acid | 61.0–96.3 7.8% (% of all phenolic acids) | Stobnicka and Gniewosz [11] Häkkinen et al. [25] | |
Caffeic acid | 0.7–1.4 12.2% (% of all phenolic acids) | Stobnicka and Gniewosz [11] Häkkinen et al. [25] | |
Ferrulic acid | 68.1% (% of all phenolic acids) | Häkkinen et al. [25] | |
Anthocyanins | Anthocyanins | 12.4–207.3 | Kivimäki et al. [26], Česonienė et al. [27] |
Cyanidin-3-galactoside | 13.1–26.8% (mean 19.8% of all anthocyanins) 19.3% (% of all anthocyanins) 20.4% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Cyanidin-3-glucoside | 0.09–13.4% (mean 3.4% of all anthocyanins) 2.8% (% of all anthocyanins) 3.2% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Cyanidin-3-arabinoside | 16.5–40.5% (mean 21.7% of all anthocyanins) 20.2% (% of all anthocyanins) 21.3% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Peonidin-3-galactoside | 5.9–42.8% (mean 30% of all anthocyanins) 29.6% (% of all anthocyanins) 29.2% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Peonidin-3-glucoside | 1.4–23.3% (mean 7.4% of all anthocyanins) 8.1% (% of all anthocyanins) 6.2% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Peonidin-3-arabinoside | 3.4–28.5% (mean 17.4% of all anthocyanins) 19.8% (% of all anthocyanins) 19.6% (% of all anthocyanins) | Česonienė et al. [27] Česonienė et al. [16] Česonienė et al. [28] | |
Flavonoids | Quercetin | 0.52–15.4 79.9% (% of all flavonoids) | Ehala et al. [15], Stobnicka and Gniewosz [11], Häkkinen et al. [25] |
Myricetin | 8.4–11.2 18.2% (% of all flavonoids) | Stobnicka and Gniewosz [11], Häkkinen et al. [25] | |
Epicatechin | 3.1–6.3 | Stobnicka and Gniewosz [11] | |
Proanthocyanins | 1.5–5.3 | Kivimäki et al. [26], Koponen et al. [29], Ogawa et al. [30] |
Phenolic Compounds | Content (mg/100 g fw) | ||
---|---|---|---|
V. oxycoccos Fruit Extract | V. oxycoccos Pomace Extract | V. macrocarpon Pomace Extract | |
Benzoic acid | 214.6 | 115.0 | 256.9 |
p-coumaric acid | 77.0 | 175.0 | 184.3 |
Chlorogenic acid | 96.3 | 408.7 | 656.9 |
Caffeic acid | 1.4 | 36.5 | 31.2 |
Sum of acids | 389.5 | 777.0 | 1173.8 |
Quercetin | 15.4 | 25.2 | 11.5 |
Epicatechin | 6.3 | 5.7 | 12 |
Isorhamnetin | 3.5 | 1.5 | 0.9 |
Sum of flavonols | 36.3 | 81.5 | 42.9 |
Bioactive Compounds | Biological Effect | References |
---|---|---|
Quercetin | anti-inflammatory | Mlcek et al. [71], Liu et al. [72], Kim et al. [73] |
antibacterial and antifungal | Cushnie et al. [74,75] | |
Proanthocyanidins | anticancer | Masoudi et al. [84] |
antimicrobial | Neto et al. [14], Kylli et al. [36] | |
urinary tract protection | Jungfer et al. [56], Ranfaing et al. [85], Gupta et al. [86], Vasileiou et al. [87] | |
cardioprotective | Kalt et al. [88] | |
Resveratrol | antibacterial, antifungal | Stobnicka et al. [11] |
Anthocyanins | antibacterial | Toivanen et al. [76] |
cardioprotective | Kalt et al. [88] |
Effect | Studied Models | Mechanism of Action | References |
---|---|---|---|
Antibacterial and antifungal activities | agar well diffusion method; human epithelial cells | antiadhesion activity (blocking bacterial adhesion) against Neisseria meningitidis, Streptococcus agalactiae, Streptococcus pneumoniae | Toivanen et al. [76], Toivanen et al. [77] |
in vitro studies (minced pork meat) | inhibition of the growth of Escherichia coli, Salmonella Enteritidis, Listeria monocytogenes, Staphylococcus aureus | Stobnicka and Gniewosz [11] | |
agar well diffusion method | inhibitory effect on hemagglutination of E. coli; the growth inhibition of Salmonella typhimurium, Enterococcus faecalis, Listeria monocytogenes, Bacillus subtilis | Česonienė et al. [27], Kylli et al. [36] | |
in vitro studies (sugar reduced fruit spreads) | inhibition of growth of Absidia glauca, Penicillium brevicompactum, Saccharomyces cerevisiae and Zygosaccharomyces bailii | Ermis et al. [45] | |
diffusion methods; human bronchial cells (Calu-3) | Antibacterial inhibitory activity against Staphylococcus aureus, Escherichia coli,; blocking bacterial adhesion against pneumococcal binding of Streptococcus pneumoniae | Rauha et al. [10], Huttunen et al. [81] | |
Prevention of urinary tract infections (UTI) | in vitro studies | effect of type-A proanthocyanidins; inhibition of the adherence of E. coli to uroepithelial cells | Davidson et al. [89], Shamseer and Vohra [90] |
women participants; meta-analyses; in vitro studies, | prevention of UTI, blocking of fimbrial adhesion of causative bacterium E. coli to colonise the uroepithelial cells | Kontiokari et al. [91], Kontiokari et al. [92], Jepson et al. [93], Jepson and Craig [94], Jepson et al. [95], Liska et al. [96], Ranfaing et al. [85] | |
Cardioprotective effect | in vitro model, rats fed with juice | vascular anti–inflammatory properties, inhibition of LPS (Lipopolysaccharide-) induced NO (nitric oxide) production, inhibition LPS-induced IL-6, IL-1β and TNF-α production | Kylli et al. [36], Kivimäki et al. [26] |
Spontaneously hypertensive rats (SHR) model | normalization of the impaired endothelium-dependent relaxation of mesenteric arteries, activity of endothelium-derived hyperpolarizing factor | Kivimäki et al. [97] | |
Anticancer activity | in vitro model (human oral, breast, colon tumor cells) | inhibition of stages of carcinogenesis, stimulation of the apoptosis of cancer cells | Seeram et al. [98], Masoudi and Saiedi [84] |
human prostate cancer cells | inhibition of specific temporal NMP (1-Methyl-2-pyrrolidone) regulators | Seeram et al. [98] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2019, 24, 24. https://doi.org/10.3390/molecules24010024
Jurikova T, Skrovankova S, Mlcek J, Balla S, Snopek L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules. 2019; 24(1):24. https://doi.org/10.3390/molecules24010024
Chicago/Turabian StyleJurikova, Tunde, Sona Skrovankova, Jiri Mlcek, Stefan Balla, and Lukas Snopek. 2019. "Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos)" Molecules 24, no. 1: 24. https://doi.org/10.3390/molecules24010024