Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review
Abstract
1. Introduction
2. Biosynthetic Pathway of Phenolic Acids
3. Chemical Constituents and Structure of Polyphenols
3.1. Phenolic Acids
3.2. Other Compounds
4. Pharmacological Activities of Phenolic Acids
4.1. Anti-Oxygenation Activity
4.2. Anti-Myocardial/Cerebral Ischemia-Reperfusion Injury Activity
4.3. Anti-Thrombosis Activity
4.4. Anti-Liver Injury Activity
4.5. Anti-Tumour Activity
4.6. Others
5. Conclusions
Funding
Conflicts of Interest
References
- Xu, J.P.; Wei, K.H.; Zhang, G.J.; Lei, L.J.; Yang, D.W.; Wang, W.L.; Han, Q.H.; Xia, Y.; Bi, Y.Q.; Yang, M.; et al. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J. Ethnopharmacol. 2018, 225, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.W.; Lau, K.M.; Hon, P.M.; Mak, T.; Woo, K.S.; Fung, K.P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yeap, F.L. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Zhang, B.B.; Nie, S.Q.; Liang, J.Y.; Wu, F.W.; Feng, F. Advances in chemical constituents and pharmacological activities of sage. Strait Pharm. J. 2014, 26, 1–5. [Google Scholar]
- Zhang, Z.F.; Chen, H.S.; Li, Z.R. Researches of constituents and bioactivity of Salvia spp. Chin. J. New Drugs 2007, 16, 665–672. [Google Scholar] [CrossRef]
- Li, M.H.; Chen, J.M.; Peng, Y.; Xiao, P.G. Distribution of phenolic acids in chinese Salvia plants. World Sci. Technol. 2008, 10, 46–52. [Google Scholar] [CrossRef]
- Zhao, G.R.; Zhang, H.M.; Ye, T.X.; Xiang, Z.J.; Yuan, Y.J.; Guo, Z.X.; Zhao, L.B. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem. Toxicol. 2008, 46, 73–81. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, Y.C.; Hu, W.L.; Hung, Y.C. Oxidative stress and Salvia miltiorrhiza in aging-associated cardiovascular diseases. Oxidative Med. Cell. Longev. 2016, 2016, 4797102. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.G.; Wu, Y.; Stevens, R.C.; Jacobson, K.A.; Zhao, S. Salvianolic acids from antithrombotic Traditional Chinese Medicine Danshen are antagonists of human P2Y 1 and P2Y 12 receptors. Sci. Rep. 2018, 8, 11380. [Google Scholar] [CrossRef]
- Jia, D.S.; Li, R.S.; Wen, C.X.; Xie, X.L.; Cui, S.Z.; Liu, L.D.; Bian, J.B. Study on preparation technology and quality standard of Salvia miltiorrhiza tea. Food Res. Dev. 2017, 38, 67–70. [Google Scholar] [CrossRef]
- Zhang, S.G.; Xu, F.H. Qu shan brand danshen liquor functional components-determination method of total saponins content. Shandong Food Ferment 2004, 3, 50. [Google Scholar]
- Shu, Y.; Li, L.D.; Li, Y.K. Clinical research status and quality analysis of compound Salvia miltiorrhiza preparation for coronary heart disease. Pharmacol. Clin. Chin. Mater. Med. 2008, 24, 76–79. [Google Scholar] [CrossRef]
- Liu, S.; Wu, J.R.; Dan, Z.; Tan, D.; Zhang, B. Meta-analysis on Randomized Controlled Trials of Compound Danshen Injection in Treatment for Acute Cerebral Infarction. Chin. J. Pharmacoepidemiol. 2017, 26, 465–470. [Google Scholar]
- Xie, N.; Tang, W.Y. Application of traditional Chinese medicine Salvia miltiorrhiza in modern cosmetics. Jilin J. Tradit. Chin. Med. 2018, 38, 700–702. [Google Scholar]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Kallscheuer, N.; Vogt, M.; Marienhagen, J. A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth. Biol. 2017, 6, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Mattera, R.; Benvenuto, M.; Giganti, M.G.; Tresoldi, I.; Pluchinotta, F.R.; Bergante, S.; Tettamanti, G.; Masuelli, L.; Manzari, V.; Modesti, A.; et al. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017, 9, 523. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Rungsimakan, S.; Rowan, M.G. Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochemistry 2014, 108, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Wu, J.Q.; Ma, Y.; Wang, P.; Gu, Z.X.; Yang, R.Q. Advances in biosynthesis, regulation and bioactivity of phenolic acids in plant food raw materials. Food Sci. 2018, 39, 321–328. [Google Scholar]
- Schenck, C.A.; Maeda, H.A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 2018, 149, 82–102. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, Q.; Wu, X.; Zhou, Z.; Ding, M.; Shi, M.; Huang, F.; Li, S.; Wang, Y.; Kai, G. Comprehensive transcriptome profiling of Salvia miltiorrhiza for discovery of genes associated with the biosynthesis of tanshinones and phenolic acids. Sci. Rep. 2017, 7, 10554. [Google Scholar] [CrossRef] [PubMed]
- Liu, F. Effect of PAP2 transcription factor on synthesis of salvianolic acids. Master’s Thesis, Shaanxi Normal University, Xi’an, China, 2011. [Google Scholar]
- Neta, M.; Moran, O.; Rinat, O.; Noga, S.P.; Biruk, A.; Aaron, F.; Gad, G.; Avichai, P.; David, W.; Michal, O.S. Phenylalanine and tyrosine levels are rate-limiting factors in production of health promoting metabolites in Vitis vinifera cv. Gamay Red cell suspension. Front. Plant Sci. 2015, 6, 538. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, M.; Yuan, T.; Wang, Y.; Shi, M.; Lu, S.; Tang, B.; Pan, J.; Wang, Y.; Kai, G. The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem. 2019, 274, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Ma, Y.; Tang, J.F.; He, Y.L.; Liu, Y.C.; Ma, X.J.; Shen, Y.; Cui, G.H.; Lin, H.X.; Rong, Q.X.; et al. The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza. Molecules 2015, 20, 16235–16254. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Liu, J.; Zhang, C.; Liang, Z. Regulation of Water-Soluble Phenolic Acid Biosynthesis in Salvia miltiorrhiza Bunge. Appl. Biochem. Biotechnol. 2013, 170, 1253–1262. [Google Scholar] [CrossRef]
- Zhao, S.J.; Zhang, G.Y.; Liu, D.; Hu, Z.B. Advances in pharmacology and biosynthesis of water-soluble phenolic acids from Salvia miltiorrhiza. Chin. Tradit. Drug 2004, 3, 107–110. [Google Scholar] [CrossRef]
- Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships. Curr. Med. Chem. 2013, 20, 4436–4450. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, Y.B.; Xia, C.N.; Zhong, G.X. Advances in the synthesis and bioactivity of caffeic acid derivatives. Zhejiang Chem. Ind. 2012, 43, 24–28. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, H.; Ji, A.; Zhang, X.; Song, J.; Chen, S. Global Identification of the Full-Length Transcripts and Alternative Splicing Related to Phenolic Acid Biosynthetic Genes in Salvia miltiorrhiza. Front. Plant Sci. 2016, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Tripathi, A.; Gupta, D.K. Metabolic modeling of Rosmarinic acid biosynthetic pathway. Bioinformation 2010, 5, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Di, P.; Zhang, L.; Chen, J.; Tan, H.; Xiao, Y.; Dong, X.; Zhou, X.; Chen, W. ¹³C tracer reveals phenolic acids biosynthesis in hairy root cultures of Salvia miltiorrhiza. ACS Chem. Biol. 2013, 8, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.T.; Xu, S.L.; Zhu, Y.; Gu, W.; Qian, D.W.; Duan, J.A. Research progress on biosynthesis pathway and regulation mechanism of salvianolic acids. Chin. Tradit. Drug 2016, 47, 3324–3331. [Google Scholar] [CrossRef]
- Pandey, R.P.; Parajuli, P.; Koffas, M.A.G.; Sohng, J.K. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 2016, 34, 634–662. [Google Scholar] [CrossRef]
- Koirala, N.; Thuan, N.H.; Ghimire, G.P.; Thang, D.V.; Sohng, J.K. Methylation of flavonoids: Chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb. Technol. 2016, 86, 103–116. [Google Scholar] [CrossRef]
- Chen, J.Y. Metabolic pathways of phenolic acids and phenylpropane from grape fruits in wine. China Agric. Univ. 2005. [Google Scholar] [CrossRef]
- Xing, B.C. Regulation of phenolic acids and tanshinones biosynthesis by bHLH and WD40 transcriptionfactors in Salvia miltiorrhiza Hairy roots. Master’s Thesis, Zhejiang Sci.-Tech. University, Hangzhou, China, 2015. [Google Scholar]
- Wu, J.H.; Wu, Z.H.; Pei, J.G.; Liu, J.; Sun, Y.Z.; Wu, G.F.; Peng, S.M.; Fu, X.M. Research progress of polyphenols. Mod. Chin. Med. 2015, 17, 630–636. [Google Scholar] [CrossRef]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS Analysis of the Phenolic Compounds, Antioxidant and Antimicrobial Activities of Salvia L. Species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef]
- Hou, J.; Fu, J.; Zhang, Z.M.; Zhu, H.L. Modification of bioactivity and chemical structure of caffeic acid derivatives. Fudan Univ. J. Med. Sci. 2011, 38, 546–552. [Google Scholar] [CrossRef]
- Hu, P.; Luo, G.A.; Zhao, Z.; Jiang, Z.H. Quality Assessment of Radix Salvia Miltiorrhizae. Chem. Pharm. Bull. (Tokyo) 2005, 53, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.Y.; Chen, W.J.; Yang, G.H.; Zhu, D.; Mao, X.; Shao, Y.Y.; Wu, L.F.; Zhang, X.X.; Zhang, L.Z. Research progress of salvianolic acids. China J. Chin. Mater. Med. 2016, 41, 806–812. [Google Scholar] [CrossRef]
- Bao, Y.F.; Shen, C.; Wang, F. Research progress and development prospect of caffeic acid and its main derivatives. Nat. Prod. Res. Dev. 2018, 10, 1825–1833. [Google Scholar] [CrossRef]
- Zeng, G.; Xiao, H.; Liu, J.; Liang, X. Identification of phenolic constituents in radix Salvia miltiorrhizae by liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 20, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Park, Y.S.; Jin, Y.H.; Park, C.S. Production and applications of rosmarinic acid and structurally related compounds. Appl. Microbiol. Biotechnol. 2015, 99, 2083–2092. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.G.; Tran, P.T.; Lee, J.H.; Min, B.S.; Kim, J.A. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Arch. Pharm. Res. 2018, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowska-Kowalczyk, J.; Kolodziejczyk-Czepas, J.; Kowalczyk, M.; Pecio, Ł.; Nowak, P.; Stochmal, A. Yunnaneic Acid B, a Component of Pulmonaria officinalis Extract, Prevents Peroxynitrite-Induced Oxidative Stress in vitro. J. Agric. Food Chem. 2017, 65, 3827–3834. [Google Scholar] [CrossRef]
- Griffith, D.R.; Botta, L.; St Denis, T.G.; Snyder, S.A. Explorations of caffeic acid derivatives: Total syntheses of rufescenolide, yunnaneic acids C and D, and studies toward yunnaneic acids A and B. J. Org. Chem. 2014, 79, 88–105. [Google Scholar] [CrossRef]
- Liu, X.; Chen, R.; Shang, Y.; Jiao, B.; Huang, C. Superoxide radicals scavenging and xanthine oxidase inhibitory activity of magnesium lithospermate B from Salvia miltiorrhiza. J. Enzyme Inhib. Med. Chem. 2009, 24, 663–668. [Google Scholar] [CrossRef]
- Hase, K.; Kasimu, R.; Basnet, P.; Kadota, S.; Namba, T. Preventive effect of lithospermate B from Salvia miltiorhiza on experimental hepatitis induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide. Planta Med. 1997, 63, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Yin, Y.; Xi, M.; Zhou, D.; Zhu, Y.; Guan, Y.; Guo, C.; Wang, Y.; Duan, J.; Wen, A. Antioxidant properties of magnesium lithospermate B contribute to the cardioprotection against myocardial ischemia/reperfusion injury in vivo and in vitro. J. Tradit. Chin. Med. 2013, 33, 85–91. [Google Scholar] [CrossRef]
- Wang, M.; Kikuzaki, H.; Zhu, N.; Sang, S.; Nakatani, N.; Ho, CT. Isolation and structural elucidation of two new glycaosides from sage (Salvia officinalis L.). Agric. Food Chem. 2000, 48, 235–238. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Y.; Li, J.; Zhu, N.; Rangarajan, M.; LaVoie, E.J.; Ho, C.T. Antioxidative phenolic glycosides from sage (Salvia officinalis). J. Nat. Prod. 1999, 62, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, J.; Rangarajan, M.; Shao, Y.; La Voie, E.J.; Huang, T.C.; Ho, C.-T. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 1998, 46, 4869–4873. [Google Scholar] [CrossRef]
- Zhang, D.C.; Wu, W.L.; Liu, X.J.; Pan, D.J.; Yang, C.X.; Zhang, B.T. Salvia miltiorrhiza effective component research II. D (+) beta (3,4-dihydroxy phenyl) the structure of lactic acid. J. Shanghai First Med. Coll. 1980, 5. [Google Scholar]
- Qian, T.-X.; Li, L.-N. Isosalvianolic acid C, a depside possessing a dibenzooxepin skeleton. Phytochemistry 1992, 31, 1068–1070. [Google Scholar] [CrossRef]
- Zhao, L.M.; Liang, X.T.; Li, L.N. Prionitisides A and B, two phenolic glycosides from Salvia prionitis. Phytochemistry 1996, 42, 899–901. [Google Scholar] [CrossRef]
- Wu, Z.; Ouyang, M.; Yang, C. Polyphenolic constituents of Salvia sonchifolia. Acta Botanica Yunnanica 1999, 21, 393–398. [Google Scholar]
- Kang, H.S.; Chung, H.Y.; Jung, J.H.; Kang, S.S.; Choi, J.S. Antioxidant effect of Salvia miltiorrhiza. Arch. Pharm. Res. 1997, 20, 496. [Google Scholar] [CrossRef]
- Li, J.; Li, L.N.; Song, W.Z. Study on chemical constituents of Salvia miltiorrhiza. Chin. Tradit. Herb. Drugs 1994, 25, 347–349. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, S.; Zheng, M. Active principles of Salvia plebeia. Chin. J. Pharm. 1987, 18, 349–351. [Google Scholar]
- Cuvelier, M.E.; Richard, H.; Berset, C. Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 1996, 73, 645–652. [Google Scholar] [CrossRef]
- El-Missiry, M.M.; Hussiney, H.A.; Ismail, S.I.; Radwan, H.M.; Rizk, A.M. Constituents of plants growing in Qatar XXIV. Phytochemical investigation of Salvia aegyptiaca L. Qatar Univ. Sci. J. 1994, 14, 249–251. [Google Scholar]
- Lu, Y.; Foo, L.Y. Flavonoid and phenolic glycosides from Salvia officinalis. Phytochemistry 2000, 55, 263–267. [Google Scholar] [CrossRef]
- Yang, Z.; Hon, P.M.; Chui, K.Y.; Xu, Z.L.; Chang, H.M.; Lee, C.M.; Cui, Y.X.; Wong, H.N.C.; Poon, C.D.; Fung, B.M. Naturally occurring benzofuran: Isolation, structure elucidation and total synthesis of 5-(3-hydroxypropyl)-7-methoxy-2-(3′-methoxy-4′-hydroxyphenyl)-3-benzo[b]furancarbaldehyde, a novel adenosine A1 receptor ligand isolated from Salvia miltiorrhiza Bunge (danshen). Tetrahedron Lett. 1991, 32, 2061–2064. [Google Scholar] [CrossRef]
- Weng, X.C.; Wang, W. Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem. 2000, 71, 489–493. [Google Scholar] [CrossRef]
- Ai, C.B.; Li, L.N. Salvianolic acids d and e: Two new depsides from Salvia miltiorrhiza. Planta Med. 1992, 58, 197–199. [Google Scholar] [CrossRef]
- Liu, L.; Dai, Y.Q.; Xie, G.Y.; Li, M.L.; Feng, Q.T.; Qin, M.J. Study on chemical constituents of litchi root. Chin. Pharm. J. 2014, 16, 1393–1396. [Google Scholar] [CrossRef]
- Zhu, L.P.; Xiang, C.; Zhuang, W.T.; He, J.; Li, P.; Li, B.P. Study on chemical constituents of sage ganci. Nat. Prod. Res. Dev. 2013, 25, 785–788. [Google Scholar] [CrossRef]
- Feng, K.; Zhao, X.; Zheng, L.L.; Liang, Z.S. Analyis of Active Ingredients in Three Salvia Plant. J. Northwest For. Univ. 2010, 25, 140–143. [Google Scholar]
- Li, L.N. Water soluble active components of Salvia miltiorrhiza and related plants. J. Chin. Pharm. Sci. 1997, 6, 57–64. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.; Chen, G. Separation and determination of protocatechuic aldehyde and protocatechuic acid in salivia miltorrhrza by capillary electrophoresis with amperometric detection. Analyst 2001, 126, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y. Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells. Mol. Pharmacol. 2004, 65, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Yang, L.F.; Liang, J.M.; Xu, L.; Zhao, G.; Fu, Q. Advances on chemical constituents of Tibetan Salvia genus. China J. Chin. Mater. Med. 2017, 42, 3684–3695. [Google Scholar] [CrossRef]
- Lu, Y.R.; Foo, L.Y. Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry 1999, 51, 91–94. [Google Scholar] [CrossRef]
- Plattner, R.D.; Powell, R.G. A secoisolaricireinol branched fatty diester from Salvia plebeia seed. Phytochemistry 1978, 17, 149–150. [Google Scholar] [CrossRef]
- Kohda, H.; Takeda, O.; Tanaka, S.; Yamasaki, K.; Yamashita, A.; Kurokawa, T.; Ishibashi, S. Isolation of inhibitors of adenylate cyclase from dan-shen, the root of Salvia miltiorrhiza. Chem. Pharm. Bull. 1989, 37, 1287–1290. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.P.; Jin, Y.P.; Huang, X.F.; Zhou, W.; Han, M.; Yu, Y.; Yan, K.J.; Li, S.M.; Ma, X.H.; et al. Salvianolic acids T and U: A pair of atropisomeric trimeric caffeic acids derivatives from root of Salvia miltiorrhiza. Fitoterapia 2014, 98, 248–253. [Google Scholar] [CrossRef]
- Wang, Y.L. The Investigation and Classification of Medicinal Plants from Salvia in China. Master’s Thesis, BaoTou Medical College, BaoTou, China, 2016. [Google Scholar]
- Liu, H.Q.; Wang, G.K.; Lin, B.B.; Huang, J.; Qin, M.J. Chemical composition analysis of ethanol extract from litchi grass. J. Plant Resour. Environ. 2013, 22, 111–113. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Peng, Z.G.; Gao, L.; Dong, B.; Li, J.R.; Li, Z.Y.; Chen, H.S. Three new derivatives of anti-HIV-1 polyphenols isolated from Salvia yunnanensis. J. Asian Nat. Prod. Res. 2008, 10, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Powell, R.G.; Plattner, R.D. Structure of a secoisolariciresinol diester from Salvia plebeia seed. Phytochemistry 1976, 15, 1963–1965. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, H.; Zhao, L.; Dong, X.; Li, X.; Chai, Y.; Zhang, G. Rapid separation and identification of phenolic and diterpenoid constituents from Radix Salvia miltiorrhizae by high-performance liquid chromatography diode-array detection, electrospray ionization time-of-flight mass spectrometry and electrospray ionization quadrupole ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1855–1865. [Google Scholar] [CrossRef] [PubMed]
- Li, L.N.; Tan, R.; Chen, W.M. Salvianolic acid A, a new depside from roots of Salvia miltiorrhiza. Planta Med. 1984, 50, 227–228. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, L.N. Salvianolic Acid I: A New Depside from Salvia cavaleriei. Planta Med. 1994, 60, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.B.; Li, L.N. Stereostructure of salvianolic acid b and isolation of salvianolic acid c from Salvia miltiorrhiza. J. Nat. Prod. 1988, 51, 145–149. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.N. Salvianolic acid H, a new depside from Salvia cavalaries var. simplicifolia. Chin. Chem. Lett. 1993, 4, 501–504. [Google Scholar]
- Ai, C.B.; Deng, Q.H.; Song, W.Z.; Li, L.N. Salvianolic acid j, a depside from Salvia flava. Phytochemistry 1994, 37, 907–908. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishimura, A.; Kouno, I.; Nonaka, G.; Young, T.J. Isolation and characterization of yunnaneic acids a−d, four novel caffeic acid metabolites from Salvia yunnanensis. J. Nat. Prod. 1996, 59, 843–849. [Google Scholar] [CrossRef]
- Tanaka, T.; Nishimura, A.; Kouno, I.; Nonaka, G.; Yang, C.R. Cheminform abstract: Four new caffeic acid metabolites, yunnaneic acids e-h, from Salvia yunnanensis. Cheminform 2010, 29. [Google Scholar] [CrossRef]
- Wu, Z.J.; OuYang, M.A. Polyphenols of Salvia miltiorrhiza. Plant Divers. 1999, 21, 512–516. [Google Scholar] [CrossRef]
- Ikeshiro, Y.; Mase, I.; Tomita, Y. Abietane type diterpenoids from Salvia miltiorrhiza. Phytochemistry 1989, 28, 3139–3141. [Google Scholar] [CrossRef]
- Tezuka, Y.; Kasimu, R.; Basnet, P.; Namba, T.; Kadota, S. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge. Chem. Pharm. Bull. (Tokyo) 1997, 45, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Foo, L.Y. Salvianolic acid L, a potent phenolic antioxidant from Salvia officinalis. Tetrahedron Lett. 2001, 42, 8223–8225. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chung, H.Y.; Lee, T.W.; Oura, H.; Tanaka, T.; Nonaka, G.; Nishioka, I. Effect of magnesium lithospermate b on urinary excretion of arachidonate metabolites in rats with renal failure. Chem. Pharm. Bull. 1989, 37, 2766–2769. [Google Scholar] [CrossRef]
- Mori, M.; Kondo, T.; Yoshida, K. Cyanosalvianin, a supramolecular blue metalloanthocyanin, from petals of Salvia uliginosa. Phytochemistry 2008, 69, 3151–3158. [Google Scholar] [CrossRef]
- Ulubelen, A.; Oztürk, S.; Iśildatici, S. A New Flavone from Sulviu trilobu L.f (Labiutue). J. Pharm. Sci. 1968, 57, 1037–1038. [Google Scholar] [CrossRef]
- Zahid, M. Flavonoid glycosides from Salvia moorcroftiana wall. Carbohydr. Res. 2002, 337, 403–407. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Al-Jaber, H.I.; Abu Zarga, M.H.; Abu Orabi, S.T. Flavonoid and phenolic compounds from Salvia palaestina L. growing wild in Jordan and their antioxidant activities. Phytochemistry 2014, 99, 115–120. [Google Scholar] [CrossRef]
- He, K.Q.; Lu, W.Y.; Li, X.X.; Zhao, Z.Y.; Yang, Q. Determination of total flavonoids in sage from guizhou province. Guizhou Agric. Sci. 2013, 41, 77–79. [Google Scholar] [CrossRef]
- Kolodziejski, J.; Gill, S.; Mruk, A.; Surewicz-Szewczyk, H. Variable content of ethereal oils and tannic compounds during the vegetation stage of Salvia officinalis L. Acta Pol. Pharm. 1963, 20, 269–276. [Google Scholar] [PubMed]
- Petri, G.; Then, M.; Chanthabout, L. Tannins and other polyphenolic compounds in the genus Salvia. Planta Med. 1988, 54, 575. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.J.; Fu, Y.B.; Li, D.H.; Han, G.H.; Sun, L.; Li, Z.L.; Hua, H.M. Chemical constituents of Salvia plebeia. Chin. Tradit. Herb. Drugs 2015, 45, 1589–1592. [Google Scholar] [CrossRef]
- Jin, M.R.; Xu, H.; Duan, C.H.; Chou, G.X. Two new flavones from Salvia plebeia. Nat. Prod. Res. 2015, 29, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Chen, H.T.; Chen, Y.P.; Hsu, H.Y.; Hsieh, T.C. Isolation of the components of Salvia miltiorrhizae radix and their coronary dilator activities. Taiwan Yao Hsueh Tsa Chih 1986, 38, 226–230. [Google Scholar]
- Ren, D.B.; Qin, Y.H.; Yun, Y.H.; Lu, H.M.; Chen, X.Q.; Liang, Y.Z. Separation of nine compounds from Salvia plebeia R.Br. using two-step high-speed counter-current chromatography with different elution modes. J. Sep. Sci. 2014, 37, 2118–2125. [Google Scholar] [CrossRef]
- Jin, X.F.; Lu, Y.H.; Wei, D.Z.; Wang, Z.T. Chemical fingerprint and quantitative analysis of Salvia plebeia R.Br. by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2008, 48, 100–104. [Google Scholar] [CrossRef]
- Xing, Y.X. Chemical Composition Analysis and Ecological Study of Clematis from Qinghai Province. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 2012. Available online: http://210.75.249.4/handle/363003/3498 (accessed on 2 January 2019).
- Kamel, M.S.; Desoky, E.K.; Abdallah, O.M.; Bishay, D.W. Flavonol glycosides from leaves of Salvia farinacea Benth. Bull. Fac. Pharm. (Cairo Univ.) 1992, 30, 259–262. [Google Scholar] [CrossRef]
- Nugroho, A.; Kim, M.H.; Choi, J.; Baek, N.I.; Park, H.J. In vivo sedative and gastroprotective activities of Salvia plebeia extract and its composition of polyphenols. Arch. Pharm. Res. 2012, 35, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Zhang, C.Z. Study on Chemical Constituents of Clematis Chinensis. Tradit. Chin. Med. Mater. 2002, 25, 792–793. [Google Scholar] [CrossRef]
- Ulubelen, A.; Miski, M.; Mabry, T.J. Further flavones and triterpenes and the new 6-hydroxyluteolin 5-β-d-glucoside from Salvia tomentosa. J. Nat. Prod. 1981, 44, 586–587. [Google Scholar] [CrossRef]
- Miski, M.; Neuman, P.; Mabry, T.J. Flavonoids of Salvia tomentosa (Labiatae). J. Nat. Prod. (Lloydia) 1979, 42, 261–263. [Google Scholar] [CrossRef]
- Gu, W.H. Flavonoids Compounds of Salvia Officinalis. Chin Tra and Herbal Drugs. 1981, 12, 41–48. [Google Scholar]
- Gu, L.; Weng, X. Antioxidant activity and components of Salvia plebeia R.Br. a Chinese herb. Food Chem. 2001, 73, 299–305. [Google Scholar] [CrossRef]
- Brieskorn, C.H.; Kapadia, Z. Constituents of Salvia officinalis. XXIII: 5-Methoxysalvigenin in leaves of Salvia officinalis. Planta Med. 1979, 35, 376–378. [Google Scholar] [CrossRef]
- Moharram, A.E.; Marzouk, M.S.; El-Shenawy, S.M.; Gaara, A.; El Kady, W.M. Polyphenolic profile and biological activity of Salvia splendens leaves. J. Pharm. Pharmacol. 2012, 64, 1678–1687. [Google Scholar] [CrossRef]
- Kolac, U.K.; Ustuner, M.C.; Tekin, N.; Ustuner, D.; Colak, E.; Entok, E. The Anti-Inflammatory and Antioxidant Effects of Salvia officinalis on Lipopolysaccharide-Induced Inflammation in Rats. J. Med. Food 2017, 20, 1193–1200. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Abouali, M.; Salehi, P.; Sonboli, A.; Kanani, M.; Menichini, F.; Tundis, R. In vitro antioxidant and antiproliferative activities of nine, Salvia species. Nat. Prod. Res. 2014, 28, 2278–2285. [Google Scholar] [CrossRef]
- Adomakobonsu, A.G.; Chan, S.L.; Pratten, M.; Fry, J.R. Antioxidant activity of rosmarinic acid and its principal metabolites in chemical and cellular systems: Importance of physico-chemical characteristics. Toxicol. In Vitro 2017, 40, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Wang, Z. Antioxidant activities of leaf extract of Salvia miltiorrhiza Bunge and related phenolic constituents. Food Chem. Toxicol. 2010, 48, 0–2662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Zhang, S.; Huang, X.Y.; Li, G.; Wang, Z.H.; Ma, C.Y. Anti-lipoperoxidation of Several Organic Polyphenol Acids in vitro. Coll. Life Sci. 2014, 26, 398–402. [Google Scholar] [CrossRef]
- Xue, L.; Wu, Z.; Ji, X.P.; Gao, X.Q.; Guo, Y.H. Effect and mechanism of salvianolic acid B on the myocardial ischemia-reperfusion injury in rats. Asian Pac. J. Trop. Med. 2014, 7, 280–284. [Google Scholar] [CrossRef]
- Zhang, W.; Song, J.K.; Zhang, X.; Zhou, Q.M.; He, G.R.; Xu, X.N.; Rong, Y.; Zhou, W.X.; Du, G.H. Salvianolic acid A attenuates ischemia reperfusion induced rat brain damage by protecting the blood brain barrier through MMP-9 inhibition and anti-inflammation. Chin. J. Nat. Med. 2018, 16, 184–193. [Google Scholar] [CrossRef]
- Meng, Y. Danshen (Salvia miltiorrhiza) Prevents Myocardial Ischemia Reperfusion Injury by Regulate Nox2/ROS/JNK2/NF-κB pathway and Recude TRPC6/Ca2+ influx under High Glucose Condition. Anhui Med. Univ. 2016, 206. [Google Scholar]
- Wang, F.Q.; Chen, C.; Xia, Z.N.; Yang, F.Q. Application of Platelets in the Study of Promoting Blood Circulation and Removing Blood Stasis. Impurrity Chin. Tradit. Med. 2014, 39, 2993–3003. [Google Scholar]
- Zhu, H.L.; Zhang, D.W.; Sun, L.R.; Ji, J.B.; Wu, K. Effects of total salvianolic acid from Salvia miltiorrhiza f. alba on thromboangiitis obliterans in rats. Chin. Tradit. Herb. Drugs 2012, 43, 1565–1569. [Google Scholar]
- Lu, Y.; Li, Q.; Liu, Y.Y.; Sun, K.; Fan, J.Y.; Wang, C.S.; Han, J.Y. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci. Rep. 2015, 5, 13824. [Google Scholar] [CrossRef]
- Yu, C.; Qi, D.; Lian, W.; Li, Q.Z.; Li, H.J.; Fan, H.Y. Effects of Danshensu on Platelet Aggregation and Thrombosis: In Vivo Arteriovenous Shunt and Venous Thrombosis Models in Rats. PLoS ONE 2014, 9, e110124. [Google Scholar] [CrossRef]
- Chien, C.F.; Wu, Y.T.; Tsai, T.H. Biological analysis of herbal medicines used for the treatment of liver diseases. Biomed. Chromatogr. 2011, 25, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wu, Q.; Shi, J.S.; Chen, X.P. Advance in studies on hepatoprotective effect of Salvia miltiorrhiza and its main components. Impurrity Chin. Tradit. Med. 2015, 40, 558–593. [Google Scholar]
- Zeng, W.; Shan, W.; Gao, L.; Gao, D.; Hu, Y.; Wang, G.; Zhang, N.; Li, Z.; Tian, X.; Xu, W.; et al. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci. Rep. 2015, 5, 16013. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, Y.; Zhai, X.; Liu, M.; Chen, Z.; Tian, X.F.; Zhang, F.; Gao, D.Y.; Ma, X.C.; Lv, L.; Yao, J.H. Salvianolic acid A preconditioning confers protection against concanavalin A-induced liver injury through SIRT1-mediated repression of p66shc in mice. Toxicol. Appl. Pharmacol. 2013, 273, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cheung, C.M.; Yang, J.M.; Or, P.M.; Lee, W.Y.; Yeung, J.H. Danshen (Salvia miltiorrhiza) water extract inhibits paracetamol-induced toxicity in primary rat hepatocytes via reducing CYP2E1 activity and oxidative stress. J. Pharm. Pharmacol. 2015, 67, 980–989. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Y. Advances in studies on antitumor activities of compounds in Salvia miltiorrhiza. China J. Chin. Mater. Med. 2010, 35, 389. [Google Scholar] [CrossRef]
- Garcia, C.S.; Menti, C.; Lambert, A.P.; Barcellos, T.; Moura, S.; Calloni, C.; Branco, C.S.; Salvador, M.; Roesch-Ely, M.; Henriques, J.A. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): Antioxidant, and antitumor in mammalian cells. Anais Da Academia Brasileira De Ciencias 2016, 88, 281. [Google Scholar] [CrossRef]
- Wang, Z.S.; Luo, P.; Dai, S.H.; Liu, Z.B.; Zheng, X.R.; & Chen, T. Salvianolic acid B induces apoptosis in human glioma U87 cells through p38-mediated ROS generation. Cell. Mol. Neurobiol. 2013, 33, 921–928. [Google Scholar] [CrossRef]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2018, 109, 450–458. [Google Scholar] [CrossRef]
- Teng, F.K.; Yin, Y.; Cui, Y.J.; Deng, Y.P.; Li, D.F.; Cho, K.; Zhang, G.; Lu, A.P.; Wu, W.Y.; Yang, M.; et al. Salvianolic acid A inhibits endothelial dysfunction and vascular remodeling in spontaneously hypertensive rats. Life Sci. 2015. [Google Scholar] [CrossRef]
- Gok, D.K.; Hidisoglu, E.; Ocak, G.A.; Er, H.; Acun, A.D.; Yargıcoglu, P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem. Int. 2018. [Google Scholar] [CrossRef]
- Shen, L.; Han, B.; Geng, Y.; Wang, J.; Wang, Z.; Wang, M. Amelioration of cognitive impairments in APPswe/PS1dE9 mice is associated with metabolites alteration induced by total salvianolic acid. PLoS ONE 2017, 12, e0174763. [Google Scholar] [CrossRef] [PubMed]
- Raoufi, S.; Baluchnejadmojarad, T.; Roghani, M.; Ghazanfari, T.; Khojasteh, F.; Mansouri, M. Antidiabetic potential of salvianolic acid B in multiple low-dose streptozotocin-induced diabetes. Pharm. Biol. 2015, 53, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Bassil, M.; Daher, C.F.; Mroueh, M.; Zeeni, N. Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet. BMC Complement. Altern. Med. 2015, 15, 384. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Ding, X.R.; Chen, S.H.; Yang, J.; Wang, X.J.; Jia, G.L.; Chen, H.S.; Bo, X.C.; Wang, S.Q. Protocatechuic aldehyde inhibiys hepatitis B virus replication both in vitro and in vivo. Antivir. Res. 2007, 74, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.C.; Hsieh, F.C.; Lin, Y.J.; Wu, T.Y.; Lin, C.W.; Lin, C.T.; Tang, N.Y.; Jinn, T.R. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus 71 infections. Eur. J. Pharmacol. 2015, 755, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.P.; Wei, S.Q.; Zhang, L.Q.; Gao, X.C.; Yu, N.N.; Bi, S.; Cui, H. Preventive effect of danshensu on selenite-induced cataractogenesis in cultured rat lens. Clin. Exp. Ophthalmol. 2013, 41, 172–179. [Google Scholar] [CrossRef]
- Wang, Y.H.; Han, Y.P.; Yu, H.T.; Pu, X.P.; Du, G.H. Protocatechualdehyde prevents methylglyoxal-induced mitochondrial dysfunction and AGEs-RAGE axis activation in human lens epithelial cells. Eur. J. Pharmacol. 2014, 738, 374–383. [Google Scholar] [CrossRef]
NO. | Structures | Compound | Species | References |
---|---|---|---|---|
1 | Monomers | (2,3,4-trihydroxy-3-methyl)butyl-6-feruloylglucoside | S. officinalis | [55] |
2 | 1-caffeoyl-6-apiosyl-glucoside | S. officinalis | [56] | |
3 | (3-methoxy-4-glucosyloxyphenyl)-3-hydroxymethyl-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydrobenzofuran | S. officinalis | [57] | |
4 | 3-(3,4-dihydroxyphenyl)lactic acid(danshensu) (1) | S. miltiorrhiza | [58] | |
S. chinensis | [59] | |||
S. prionitis | [60] | |||
S. sonchifolia | [61] | |||
5 | 3-(3,4-dihydroxyphenyl)lactamide (2) | S. miltiorrhiza | [62] | |
6 | 3,4-dihydroxycinnamic acid(caffeic acid) (3) | S. miltiorrhiza | [63] | |
S. bowleyana | [63] | |||
S. chinensis | [59] | |||
S. officinalis | [55] | |||
S.plebeia | [64] | |||
S. sonchifolia | [61] | |||
7 | 3-methoxy-4-hydroxybenzoic acid (vanillic acid) | S. officinalis | [65] | |
8 | 4-hydroxyacetophenone 4-(2-(5-syringoyl)apiosyl)glucoside | S. officinalis | [55] | |
9 | 4-hydroxybenzoic acid | S. officinalis | [66] | |
10 | 4-hydroxyphenyllactic | S. plebeia | [65,67] | |
11 | 6-caffeoyl-1-fructosyl-a-glucoside | S. officinalis | [56] | |
12 | 6-feruloyl-a-glucose | S. officinalis | [57] | |
13 | 6-feruloyl-b-glucose | S. officinalis | [57] | |
14 | ailanthoidol | S.miltiorrhiza | [68] | |
15 | coniferyl aldehyde | S. plebeia | [69] | |
16 | ferulic acid (4) | S. officinalis | [70] | |
17 | isoferulic acid | S. miltiorrhiza | [70] | |
18 | methyl 3,4-dihydroxyphenyllactate | S. plebeia | [71] | |
19 | m-hydroxybenzaldehyde | S. przewalskii | [72] | |
20 | mono-feruloyltartaric acid (5) | S. chinensis | [64] | |
21 | n-butyl 3,4-dihydroxyphenyllactate (6) | S. plebeia | [71] | |
22 | p-hydroxycinnamic acid | S. miltiorrhiza | [73] | |
23 | prionitiside A | S. prionitis | [60] | |
24 | prionitiside B | S. prionitis | [74] | |
25 | protocatechuic acid | S. miltiorrhiza | [75] | |
S. sonchifolia | [55] | |||
26 | protocatechuic aldehyde | S. miltiorrhiza | [75] | |
27 | salvinal | S.miltiorrhiza | [76] | |
28 | salviaplebeiaside | S. plebeia | [77] | |
29 | Dimers | 1-hydroxypinoresinol 1-glucoside | S. officinalis | [57] |
30 | 2-(3-methoxy-4-hydroxyphenyl)-5-(3-hydroxypropyl)-7-methoxybenzofuran-3-carbaldehyde | S. miltiorrhiza | [68,78] | |
31 | isolariciresinol 3α-glucoside | S. officinalis | [79] | |
32 | isolariciresinol di(12-methylmyristate) | S. plebeia | [80] | |
33 | isosalvianolic acid C | S. cavaleriei | [59] | |
34 | methyl rosmarinate (7) | S.miltiorrhiza | [56] | |
S. bowleyana | [63] | |||
S. prionitis | [60] | |||
35 | prolithospermic acid (przewalskinic acid A) (8) | S.miltiorrhiza | [2] | |
36 | rosmarinic acid (9) | S. miltiorrhiza | [81] | |
37 | salvianic acid C (10) | S. miltiorrhiza | [2] | |
38 | S. cavaleriei | [60] | ||
S. bowleyana | [63] | |||
S. prionitis | [60] | |||
salvianolic acid D (11) | S. miltiorrhiza | [70] | ||
39 | S. chinensis | [74] | ||
salvianolic acid F | S.miltiorrhiza | [2] | ||
40 | salvianolic acid G | S.miltiorrhiza | [2] | |
41 | salvianolic acid N | S. yunnanensis | [82] | |
42 | salviaflaside | S. flava | [82] | |
43 | salviaflaside methyl ester | S. flava | [83] | |
44 | Syringaresinol (12) | S. plebeia | [84] | |
45 | Trimers | 9″-methyl lithospermate | S. miltiorrhiza | [81] |
46 | cis-lithospermic acid | S. yunnanensis | [85] | |
47 | dimethyl lithospermate | S. miltiorrhiza | [81] | |
48 | ethyl lithospermate | S.miltiorrhiza | [70] | |
49 | ethyl salvianolate A | S. yunnanensis | [60] | |
50 | feruloylisolariciresinol 12-methylmyristate | S. plebeia | [86] | |
51 | lithospermic acid (13) | S. miltiorrhiza | [81] | |
52 | lithospermic acid dimethyl ester | S. miltiorrhiza | [81] | |
53 | lithospermic acid monomethyl ester | S. miltiorrhiza | [81] | |
54 | methyl salvianolate A | S. yunnanensis | [85] | |
55 | methyl salvianolate I | S. officinalis | [79] | |
56 | methyl salvianolic acid C | S.miltiorrhiza | [87] | |
57 | sagecoumarin | S. officinalis | [79] | |
58 | salvianolic acid A (14) | S. miltiorrhiza | [88] | |
59 | S. cavaleriei | [60] | ||
S. flava | [89] | |||
S. yunnanensis | [85] | |||
salvianolic acid C | S. miltiorrhiza | [90] | ||
60 | salvianolic acid H | S. cavaleriei | [91] | |
61 | salvianolic acid I | S. officinalis | [79] | |
62 | S. cavaleriei | [89] | ||
salvianolic acid J | S. flava | [92] | ||
63 | salvianolic acid K | S. deserta | [79] | |
64 | salvianolic acid T | S. miltiorrhiza | [82] | |
65 | salvianolic acid U | S. miltiorrhiza | [82] | |
66 | yunnaneic acid C | S. yunnanensis | [51,93] | |
67 | yunnaneic acid D | S. yunnanensis | [51,93] | |
68 | yunnaneic acid E | S. yunnanensis | [94] | |
69 | yunnaneic acid F | S. yunnanensis | [94] | |
70 | Tetramers | 9′-monomethyl lithospermate B | S. przewalskii | [95] |
71 | 9‴-monomethyl lithospermate B | S. przewalskii | [95] | |
72 | S. miltiorrhiza | [96] | ||
dimethyl lithospermate B | S. przewalskii | [95] | ||
73 | S. miltiorrhiza | [96] | ||
ethyl lithospermate B | S. miltiorrhiza | [70] | ||
74 | Rabdosiin (15) | S. yunnanensis | [97] | |
75 | sagerinic acid | S. officinalis | [79] | |
76 | salvianolic acid B(lithospermic acid B) (16) | S. miltiorrhiza | [90] | |
77 | salvianolic acid E | S. miltiorrhiza | [70] | |
78 | salvianolic acid L | S. officinalis | [98] | |
79 | yunnaneic acid G | S. yunnanensis | [94] | |
80 | yunnaneic acid H | S. yunnanensis | [94] | |
81 | Multimers | yunnaneic acids A (17) | S. yunnanensis | [51,93] |
82 | yunnaneic acid B | S. yunnanensis | [51,93] | |
83 | Salts | ammonium-potassium lithospermate B | S. miltiorrhiza | [99] |
84 | sodium danshensu | S. miltiorrhiza | [73] | |
85 | magnesium lithospermate B (18) | S. miltiorrhiza | [99] |
NO. | Compound | Structures | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | Species | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
86 | neocafhispidulin | A | S. plebeia | [69] | ||||||||
87 | 2′-hydroxy-5′-methoxybiochanin A | B | S. plebeia | [69] | ||||||||
88 | 5,6-dihydroxy-7,4′-dimethoxyflavone | C | H | S. plebeia | [107] | |||||||
89 | 5,6,3′-trihydroxy-7,4′-dimethoxyflavone | OH | S. plebeia | [108] | ||||||||
90 | 5,7,3′-trihydroxy-4′-methoxyflavanone (hesperetin) | D | H | H | OH | OCH3 | H | S. officinalis | [65] | |||
91 | 6-methoxynaringenin | H | OCH3 | H | OH | H | S. plebeia | [107] | ||||
92 | 5,3′-dihydroxy-7,4′-dimethoxyflavanone | CH3 | H | OH | OCH3 | H | S. miltiorrhiza | [109] | ||||
93 | (2S)-5,7,4′-trihydroxy-6-methoxy-flavanone-7-O-β-D-glucopyran-oside | Glc | OCH3 | H | OH | H | S. plebeia | [108] | ||||
94 | 5,7,3′,4′-tetrahydroxy-6-methoxy-flavanone-7-O-β-D-glucopyran-oside | Glc | OCH3 | OH | OH | H | S. plebeia | [108] | ||||
95 | 5,6,7,4′-tertrahydroxyflavone | E | H | H | H | OH | H | H | OH | H | S. plebeia | [110] |
96 | luteolin | H | OH | H | OH | H | OH | OH | H | S. plebeia | [111] | |
97 | apigenin | H | OH | H | OH | H | H | OH | H | S. plebeia | [85] | |
98 | kaempferol | H | OH | H | OH | OH | H | OH | H | S. roborowskii | [112] | |
99 | -3′-methyl ether (isorhamnetin) | H | OH | H | OH | OH | H | OH | OCH3 | S. farinacea | [113] | |
100 | quercetin | H | OH | H | OH | OH | OH | OH | H | S. plebeia | [114] | |
101 | quercimelin | H | OH | H | OH | Rham | OH | OH | H | S. roborowskii | [115] | |
102 | myricitrin | H | OH | H | OH | Rham | OH | OH | OH | S. roborowskii | [112] | |
103 | rutin | H | OH | H | OH | Rham-Glc | OH | OH | H | S. roborowskii | [115] | |
104 | 6-hydroxyapigenin (scutellarein) | H | OH | OH | OH | H | H | OH | H | S. officinalis | [65] | |
105 | 6-hydroxyluteolin 5-O-glucoside | H | OH | OH | OGlc | H | H | OH | OH | S.tomentosa | [116] | |
106 | hispidulin | H | OH | OCH3 | OH | H | H | OH | H | S. plebeia | [108] | |
107 | pectolinarigenin | H | OH | OCH3 | OH | H | H | OCH3 | H | S. plebeia | [108] | |
108 | nepetin | H | OH | OCH3 | OH | H | OH | OH | H | S. officinalis | [117] | |
109 | jaceosidin | H | OH | OCH3 | OH | H | OCH3 | OH | H | S. plebeia | [108] | |
110 | eupatilin | H | OH | OCH3 | OH | H | OCH3 | OCH3 | H | S. plebeia | [114] | |
111 | gehkwahin | H | OCH3 | H | OH | H | H | OH | H | S. officinalis | [118] | |
112 | -7,4′-dimethyl ether | H | OCH3 | H | OH | H | H | OCH3 | H | S. officinalis | [3] | |
113 | kumalakenin | H | OCH3 | H | OH | OCH3 | H | OH | H | S. officinalis | [118] | |
114 | ayamin | H | OCH3 | H | OH | OCH3 | OH | OCH3 | H | S. officinalis | [118] | |
115 | sorbifolin | H | OCH3 | OH | OH | H | H | OH | H | S. plebeia | [108] | |
116 | cirsimaritin | H | OCH3 | OCH3 | OH | H | H | OH | H | S. officinalis | [118] | |
117 | cirsiliol | H | OCH3 | OCH3 | OH | H | H | OH | OH | S. plebeia | [107] | |
118 | eupatorin | H | OCH3 | OCH3 | OH | H | H | OCH3 | H | S. plebeia | [119] | |
119 | 5,6,7,4′-tetramethyl ether | H | OCH3 | OCH3 | OCH3 | H | H | OCH3 | H | S. officinalis | [120] | |
120 | cynaroside | H | OGlc | H | OH | H | OH | OH | H | S. plebeia | [114] | |
121 | hispidulin-7-O-D-glucoside | H | OGlc | OCH3 | OH | H | H | OH | H | S. plebeia | [69] | |
122 | nepitrin | H | OGlc | OCH3 | OH | H | OH | OH | H | S. plebeia | [108] | |
123 | cosmosiin | H | OGlu | H | OH | H | H | OH | H | S. deserta | [117] | |
124 | 6-hydroxyluteolin-7-glucoside | H | OGlc | OH | OH | H | OH | OH | H | S. plebeia | [110] | |
125 | nepetin-7-glucoside | H | OGlu | OCH3 | OH | H | OH | OH | H | S. plebeia | [111] | |
126 | homoplantaginin | H | OGlu | OCH3 | OH | H | H | OH | H | S. plebeia | [108] | |
127 | 6″-O-acetyl homoplantaginin | H | OGlu-Ac | OCH3 | OH | H | H | OH | H | S. plebeia | [108] | |
128 | luteolin 7-O-(4″,6″-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside | H | ORham-Glu | H | OH | H | H | OH | OH | S. splendens | [121] | |
129 | chrysoeriol-7-D-xyloside | H | Oxyloside | H | OH | H | OCH3 | OH | H | S. deserta | [118] | |
130 | salvitin | OH | OCH3 | H | OH | H | H | OH | H | S. Plebeia | [118] |
Activity | Ingredient | Model | Treatment | Result | Reference |
---|---|---|---|---|---|
Anti-hypertension | Caffeic acid, Chlorogenic acid | Cyclosporine-induced hypertensive rats | 10 and 15 mg·d−1·kg−1 | Caffeic acid and chlorogenic acid significantly (p < 0.05) reduced systolic blood pressure (SBP) and heart rates (HR), activity of angiotensin-1-converting enzyme (ACE), acetylcholinesterase (AChE), butrylcholinesterase (BChE), and arginase in the treated hypertensive rats. | [142] |
Caffeic acid and chlorogenic acid improved nitric oxide (NO) bioavailability, increased catalase activity, and reduced glutathione content while the MDA level was reduced. | |||||
Salvianolic acid A (SalA) | Spontaneously hypertensive rats (SHR) | 2.5, 5, and 10 mg·d−1·kg−1 | The inward remodeling of the retinal vein was inhibited after treatment with SalA. | [143] | |
SalA improved the endothelial-dependent vasodilatation of mesenteric vessels for SHR in vivo. | |||||
Transendothelial electrical resistance (TEER) significantly increased the human umbilical vein endothelial cell line (HUVEC) monolayer treated with SalA. | |||||
SalA exhibited an obvious protective effect on the HUVEC monolayer. | |||||
Improve memory and cognitive impairment | Rosmarinic acid | Amyloid beta (Aβ) 42-induced echoic memory decline (Rat model of Alzheimer) | 50 mg·d−1·kg−1 | It decreased the levels of thiobarbituric acid reactive substances (TBARS) and 4-Hydroxy-2- nonenal (4-HNE) but increased the activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)) and glutathione levels. | [144] |
Rosmarinic acid (RA) attenuated the increased Aβ staining and astrocyte activation. | |||||
RA treatment reversed the Aβ42-related alterations in auditory event related potential (AERP) parameters. | |||||
Total salvianolic acid (TSA) | Alzheimer′s disease modelAPPswe/PS1dE9 mice | 30 and 60 mg·d−1·kg−1, intraperitoneal (i.p.) injection | Treatment with TSA substantially decreased the low-density lipoprotein (LDL)-C level, and 60 mg·kg−1 TSA decreased the cholesterol (CHOL) level. | [145] | |
The Aβ42 and Aβ40 levels in the hippocampus were decreased. | |||||
Hypoglycemic | Salvianolic acid B (Sal B) | Multiple low-dose streptozotocin (MLDS)-induced diabetes in rat | 20 or 40 mg·kg−1 | They caused a significant decrease of the serum glucose (p < 0.05–0.01) and an improvement in the oral glucose tolerance test (OGTT). | [146] |
Serum insulin was significantly higher in Sal B20- and Sal B40-treated diabetics and treatment of diabetics with Sal B40 significantly lowered MDA, raised GSH, and activity of catalase with no significant change of nitrite. | |||||
The number of pancreatic islets and their area was significantly higher and apoptosis reactivity was significantly lower in the Sal B40-treated diabetic group versus diabetics. | |||||
Water extract of S. libanotica | Animals were fed a high-fat diet | 50, 150, and 450 mg·kg−1 | A decrease in fasting serum glucose and an increase in fasting serum insulin and liver glycogen content. | [147] | |
Intake produced a significant improvement in the serum high-density lipoprotein (HDL) and HDL/low-density lipoprotein (LDL) cholesterol ratio, as well as a decrease in abdominal fat. | |||||
Antiviral | Protocatechuic aldehyde | Hepatitis B virus (HBV) replication in the HepG2 2.2.15 cell line | 24–48 μg·mL−1 | Protocatechuic aldehyde appeared to downregulate the secretion of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) as well as the release of HBV DNA from HepG2 2.2.15 in a dose- and time-dependent manner. | [148] |
Duck hepatitis B virus (DHBV) replication in ducklings | 25, 50, or 100 mg·kg−1, intraperitoneally, twice daily | Protocatechuic aldehyde also reduced viremia in DHBV-infected ducks. | |||
Magnesium lithospermate B | Enterovirus 71 (EV71) viral internal ribosome entry site (IRES)-mediated translation | 30 μg·mL−1 | Magnesium lithospermate B inhibited EV71 infection when they were added to rhabdomyosarcoma (RD) cells during the viral absorption stage. | [149] | |
It had a low IC50 value of 0.09 mmol·L−1 and a high therapeutic index (TI) value of 10.52. | |||||
100 mg·mL−1 | Magnesium lithospermate B also reduced EV71 viral particle production and significantly decreased VP1 protein production. | ||||
Rosmarinic acid | EV71 viral IRES-mediated translation | 30 μg·mL−1 | Rosmarinic acid inhibited EV71 infection when they were added to RD cells during the viral absorption stage. | ||
It had an IC50 value of 0.50 mmol·L−1 and a TI value of 2.97. | |||||
100 mg·mL−1 | Rosmarinic acid also reduced EV71 viral particle production and significantly decreased VP1 protein production. | ||||
Prevents and treats cataract | Danshensu | Selenite-induced cataractogenesis in cultured rat lens | 500 mmol·L−1 | Lens morphology: 75% of lenses were transparent, 25% developed only lesser amounts of cortical vacuolization. | [150] |
Danshensu reduces MDA and restores GSH level and total sulfhydryl (SH) content in the lens. | |||||
Increase of anti-oxidant enzymes (SOD, CAT) activities with danshensu. | |||||
Protocatechualdehyde | Methylglyoxal-induced mitochondrial dysfunction in Human lens epithelial cells | 0.1, 1, and 10 μmol·L−1 | Protocatechualdehyde alleviated Methylglyoxal (MGO)-induced mitochondrial dysfunction and apoptosis in human lens epithelial cells (SRA01/04 cells). | [151] | |
Protocatechualdehyde was capable of inhibiting MGO-mediated advanced glycation end products (AGEs) formation and blocking receptor of AGEs expression in SRA01/04 cells. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, J.; Gong, X.; Yang, M.; Zhang, C.; Li, M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules 2019, 24, 155. https://doi.org/10.3390/molecules24010155
Wang J, Xu J, Gong X, Yang M, Zhang C, Li M. Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules. 2019; 24(1):155. https://doi.org/10.3390/molecules24010155
Chicago/Turabian StyleWang, Jie, Jianping Xu, Xue Gong, Min Yang, Chunhong Zhang, and Minhui Li. 2019. "Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review" Molecules 24, no. 1: 155. https://doi.org/10.3390/molecules24010155
APA StyleWang, J., Xu, J., Gong, X., Yang, M., Zhang, C., & Li, M. (2019). Biosynthesis, Chemistry, and Pharmacology of Polyphenols from Chinese Salvia Species: A Review. Molecules, 24(1), 155. https://doi.org/10.3390/molecules24010155