Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sniffing Test and Analysis of VOCs in C. indicum Linne Essential Oil
2.3. Measurement of Blood Pressure and EEG
2.4. Statistical Processing
3. Results
3.1. VOC Analysis and Sniffing Test for C. indicum Linne
3.2. Effect of Inhalation of the VOCs in C. indicum Linné on Blood Pressure and EEG
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lee, H.K.; Nam, C.Y. The effects of job stress, depression, and psychological happiness on job satisfaction of office workers. J. Korean Acad. Soc. Nurs. Educ. 2015, 21, 490–498. [Google Scholar] [CrossRef]
- Gould, E.; McEwen, B.S.; Tanapat, P.; Galea, L.A.; Fuchs, E. Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J. Neurosci. 1997, 17, 2492–2498. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R. Stress, metaplasticity, and antidepressants. Curr. Mol. Med. 2002, 2, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Sarko, J. Antidepressants, old and new. A review of their adverse effects and toxicity in overdose. Emerg. Med. Clin. North Ame. 2000, 18, 637–654. [Google Scholar] [CrossRef]
- Saller, R.; Berger, T.; Reichling, J.; Harkenthal, M. Pharmaceutical and medicinal aspects of australian te tree oil. Phytomedicine 1998, 5, 489–495. [Google Scholar] [CrossRef]
- Dudai, N.O.; Larkov, U.; Ravid, E.; Putievsky, E.; Lewinsohn, E. Developmental control of monoterpene content and composition in Micromeria fruicosa (L.) Druce. Ann. Bot. 2001, 88, 349–354. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Xuan, T.D.; Koyama, H.; Tawata, S. Antioxidant activity and contents of essential oil and phenolic compounds in flowers and seeds of Alpinia zerumbet (Pers.) B.L. Burtt. & R.M. Sm. Food Chem. 2007, 104, 1648–1653. [Google Scholar]
- Gouvinhas, I.; Machado, N.; Sobreira, C.; Dominguez-Perles, R.; Gomes, S.; Rosa, E.; Barros, A.I.R.N.A. Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 2017, 22, 1986. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Xuan, T.D. Viewpoint: A contributory rol of shell ginger (Alpinia zerumbet) for human longevity in Okinawa, Japan? Nutrients 2018, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.S.; Hong, J.H.; Choi, Y.H. Characteristics of Elsholtzia splendens extracts on simultaneous steam distillation extraction conditions. Korean J. Food Preserv. 2006, 13, 623–628. [Google Scholar]
- Lim, G.S.; Kim, R.; Cho, H.; Moon, Y.S.; Choi, C.N. Comparison of volatile compounds of Chamaecyparis obtusa essential oil and its application on the improvement of atopic dermatitis. KSBB. J. 2013, 28, 115–122. [Google Scholar] [CrossRef]
- Shin, Y.J.; Jeon, J.R.; Park, G.S. Physicochemical properties of gamgug (Chrysanthemun indicum L.). J. Korean Soc. Food Sci. Nutr. 2004, 33, 146–151. [Google Scholar]
- Jang, D.S.; Park, K.H.; Lee, J.R.; Ha, T.J.; Park, Y.B.; Nam, S.H.; Yang, M.S. Antimicrobial activities of sesquiterpene lactones isolated from Hemisteptia lyrata, Chrysanthemum zawadskii, and Chrysanthemum boreale. J. Korean Soc. Agric. Chem. Biotechnol. 1999, 44, 137–142. [Google Scholar]
- Yun, J.H.; Hwang, E.S.; Kim, G.H. Effects of Chrysanthemum indicum L. extract on the function of osteoblastic MC3T3-E1 cells under oxidative stress induced by hydrogen peroxide. Korean J. Food Sci. Technol. 2012, 44, 82–88. [Google Scholar] [CrossRef]
- Shunying, Z.; Yang, Y.; Huaidong, Y.; Yue, Y.; Guolin, Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 2005, 96, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Choi, G.Y.; Yoon, T.S.; Cheon, M.S.; Choo, B.K.; Kim, H.K. Anti-inflammatory activity of Chrysanthemum indicum extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol. 2009, 123, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Ren, A.N.; Xu, L.; Sun, X.J.; Hua, X.B. The experimental study on the immunological and anti-inflammatory activities of Chrysanthemum indicum. Chinese J. Traditional Med. Sci. Technol. 2000, 2, 92–93. [Google Scholar]
- Lee, S.H.; Hwang, I.G.; Nho, J.W.; Chang, W.D.; Lee, C.H.; Woo, K.S.; Jeong, H.S. Quality characteristics and antioxidant activity of Chrysanthemum indicum L., Chrysanthemum boreale M. and Chrysanthemum zawadskii K. powdered teas. J. Korean Soc. Food Sci. Nutr. 2009, 38, 824–831. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, Z.D.; Ji, Y.Y.; Zhang, S.; Huang, C.; Li, J.; Xia, X.M. Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract. World J. Gastroentero. 2009, 15, 4538–4546. [Google Scholar] [CrossRef]
- Iosifescu, D.V. Electroencephalography-derived biomarkers of antidepressant response. Harv. Rev. Psychiatry 2011, 19, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Cheon, E.J. Electroencephalographic changes in depression. J. Korean Soc. Biol. Ther. Psychiatry 2013, 19, 93–100. [Google Scholar]
- Paquette, V.; Beauregard, M.; Beaulieu-Prevost, D. Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Res. 2009, 174, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Thakor, N.V.; Tong, S. Advances in quantitative electroencephalogram analysis methods. Annu. Rev. Biomed. Eng. 2004, 6, 453–495. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Hur, M.H.; Buckle, J.; Choi, J.; Lee, M.S. Effect of aromatherapy on symptoms of dysmenorrhea in college students: A randomized placebo-controlled clinical trial. J. Altern. Complement. Med. 2006, 12, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kim, M.S.; Yoo, H.S.; Kim, J.K.; Shin, E.C. Analysis of nutritional components and sensory attributes of grilled and fast-chilled mackerels. J. Korean Soc. Food Sci. Nutr. 2016, 45, 452–459. [Google Scholar] [CrossRef]
- Lim, H.J.; Kim, J.K.; Cho, K.M.; Joo, O.S.; Nam, S.H.; Lee, S.W.; Kim, H.; Shin, E.C. Analysis of nutritional components, volatile properties, and sensory attributes of Cynanchi wilfordii Radix: Characterization study. J. Korean Soc. Food Sci. Nutr. 2015, 44, 564–572. [Google Scholar] [CrossRef]
- Jung, D.J.; Cha, J.Y.; Kim, S.E.; Ko, I.G.; Jee, Y.S. Effects of ylang-ylang aroma on blood pressure and heart rate in healthy men. J. Exerc. Rehabil. 2013, 9, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Choi, H.J. Effects of sleep habits on EEG sensory motor rhythm in female college students. J. Life Sci. 2012, 22, 613–620. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Seo, M.; Kim, M.J.; Kim, H.Y.; Kim, S.M. Effect of essential oil and supercritical carbon dioxide extract from the root of Angelica gigas on human EEG activity. Complement. Ther. Clin. Pract. 2017, 28, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Jäger, W.; Höferl, M. Metabolism of terpenoids in animal models and humans. In Handbook of Essential Oils; CRC Press Co.: Boca Raton, FL, USA, 2016; pp. 253–279. [Google Scholar]
- Miyazawa, M.; Shindo, M.; Shimada, T. Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from Eucalyptus polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metab. Dispos. 2001, 29, 200–205. [Google Scholar] [PubMed]
- Kikuchi, A.; Yamaguchi, H.; Tanida, M.; Abe, T.; Uenoyama, S. Effect of odors in cardiac response patterns in a reaction time task. Tohoku Psychol. Folia 1992, 52, 74–82. [Google Scholar]
- Kovar, K.A.; Gropper, B.; Friess, D.; Ammon, H.P.T. Blood levels of 1,8-Cineole and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Med. 1987, 53, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Sayorwan, W.; Ruangrungsi, N.; Piriyapunyporn, T.; Hongratanaworakit, T.; Kochabhakdi, N.; Siripornpanich, V. Effect of inhaled rosemary oil in subjective feelings and activities of the nervous system. Sci. Pharm. 2013, 81, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.W.; Bechara, A.; Damasio, H.; Tranel, D.; Damasio, A.R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat. Neurosci. 1999, 2, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Eichenbaum, H.; Yonelinas, A.R.; Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 2007, 39, 123–152. [Google Scholar] [CrossRef] [PubMed]
- Bays, P.M.; Singh-Curry, V.; Gorgoraptis, N.; Driver, J.; Husain, M. Integration of goal- and stimulus-related visual signals revealed by damage to human parietal cortex. J. Neurosci. 2010, 30, 5968–5978. [Google Scholar] [CrossRef] [PubMed]
- McKyton, A.; Zohary, E. Beyond retinotopic mapping: The spatial representation of objects in the human lateral occipital complex. Cereb. Cortex 2007, 17, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Cho, H.H.; Hur, J.W.; Kim, K.S.; Jung, S.Y.; Seol, J.H. The Fundamentals of Neurofeedback; Sigma Press: Seoul, Korea, 2012; pp. 39–86. [Google Scholar]
- Sugano, H. Psychophysiological studies of fragrances. In Fragrance: The Psychology and Biology of Perfume; Elsevier Science Publishers Ltd.: Barking, UK, 1992; pp. 221–226. [Google Scholar]
- Lee, C.F.; Katsuura, T.; Shibata, S.; Ueno, Y.; Ohta, T.; Higimoto, S.; Sumita, K.; Okada, A.; Harada, H.; Kikuchi, Y. Responses of electroencephalogram to different odors. Ann. Physiol. Anthropol. 1994, 13, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Lirig, T.S. The application of electroencephalographic techniques to the study of human olfaction: A review and tutorial. Int. J. Psychophysiol. 2000, 36, 91–104. [Google Scholar] [CrossRef]
- Nakagawa, M.; Nagai, H.; Inui, T. Evaluation of drowsiness by EEGs. Odors controlling drowsiness. Flavour. Fragr. J. 1992, 20, 68–72. [Google Scholar]
- Nasel, C.; Nasel, B.; Samec, P.; Schindler, E.; Buchbauer, G. Functional imaging of effects of fragrances on the human brain after prolonged inhalation. Chem. Senses 1994, 19, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Walker, J. QEEG-guided neurofeedback for recurrent migraine headaches. Clin. EEG Neurosci. 2011, 42, 59–61. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Compounds | Retention Time (min) | Retention Index | Concentration (μg/mL) | Odor Intensity 1 | Odor Description |
---|---|---|---|---|---|
Acids | |||||
2-Methyl butanoic acid | 10.77 | 892 | 0.81 ± 0.08 | ||
Tiglic acid | 12.38 | 942 | 0.38 ± 0.15 | ||
Decanoic acid | 25.87 | 1400 | 4.53 ± 0.29 | ||
Ethyl ester decanoic acid | 26.35 | 1420 | 2.27 ± 0.27 | ||
Alcohols | |||||
1,8-Cineole | 16.35 | 1063 | 66.18 ± 8.59 | 4 | Chrysanthemum indicum |
1,7,7-Trimethyl-2,2,1-heptan-2-ol | 20.60 | 1203 | 45.19 ± 2.05 | 3 | Sharp |
2-Methyl-5-1-methyl ethyl phenol | 24.11 | 1333 | 1.42 ± 0.37 | ||
Aldehyde | |||||
2-Methyl-3-phenyl propanal | 22.47 | 1272 | 0.73 ± 0.11 | ||
Hydrocarbons | |||||
1,3-Dimethyl benzene | 11.75 | 921 | 0.11 ± 0.02 | ||
Camphene | 13.58 | 977 | 3.88 ± 0.64 | ||
Trimethyl benzene | 14.05 | 990 | 1.88 ± 1.62 | ||
1-Ethyl methyl benzene | 14.09 | 991 | 0.78 ± 0.38 | ||
Sabinene | 14.41 | 999 | 1.53 ± 1.21 | 1 | Paint |
Phellandrene | 15.42 | 1033 | 4.35 ± 2.95 | ||
α-Terpinene | 15.81 | 1046 | 4.53 ± 1.32 | ||
1-Methyl-3-1-methyl ethyl benzene | 16.06 | 1054 | 6.73 ± 5.08 | ||
β-Ocimene | 16.75 | 1075 | 60.77 ± 8.63 | ||
1,2-Diethyl benzene | 17.01 | 1083 | 1.22 ± 0.03 | 2 | Solvent |
Sabinene hydrate | 17.45 | 1096 | 3.72 ± 0.14 | ||
4-Ethyl-1,2-dimethyl benzene | 17.72 | 1105 | 1.41 ± 0.03 | ||
Camphor | 20.10 | 1187 | 621.08 ± 18.51 | 1 | Chrysanthemum indicum |
Azulene | 21.01 | 1219 | 4.81 ± 0.05 | 4 | Hospital |
Dodecane | 21.18 | 1225 | 2.00 ± 0.01 | ||
3,4-Dimethoxy toluene | 22.34 | 1268 | 2.78 ± 0.52 | ||
1,2,4-Triethyl benzene | 22.40 | 1269 | 1.32 ± 0.28 | ||
Dimethyl indan | 22.70 | 1280 | 1.92 ± 1.63 | 2 | Pencil |
Bornyl acetate | 23.77 | 1320 | 86.99 ± 17.21 | ||
Tridecane | 23.86 | 1324 | 2.47 ± 0.31 | ||
Neryl acetate | 25.57 | 1389 | 2.95 ± 0.42 | ||
α-Copaene | 26.05 | 1408 | 4.20 ± 0.94 | ||
Biphenyl | 26.11 | 1410 | 0.70 ± 0.09 | ||
Tetradecane | 26.44 | 1424 | 20.07 ± 4.16 | ||
Caryophyllene | 27.24 | 1457 | 36.18 ± 8.46 | ||
Germacrene D | 27.40 | 1463 | 117.43 ± 16.62 | ||
β-Farnesene | 28.01 | 1488 | 38.33 ± 9.49 | ||
Aroma dendrene | 28.40 | 1503 | 3.32 ± 3.66 | ||
β-Selinene | 28.56 | 1510 | 26.05 ± 5.36 | ||
α-Farnesene | 29.11 | 1534 | 4.73 ± 2.06 | ||
β-Bisabolene | 29.20 | 1538 | 3.76 ± 0.74 | ||
β-Sesquiphellandrene | 29.61 | 1555 | 24.89 ± 4.34 | ||
Ketones | |||||
3-Cyclohepten-1-one | 9.73 | 864 | 0.05 ± 0.02 | ||
d-Carvone | 22.57 | 1276 | 2.21 ± 0.64 |
Subject | Heart Rate (beats/min) | Systolic Pressure (mm Hg) | Diastolic Pressure (mm Hg) | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
1 | 97.5 ± 0.7 | 90.5 ± 3.5 * | 116.5 ± 5.4 | 109.0 ± 1.4 * | 79.5 ± 2.1 | 73.0 ± 0.1 * |
2 | 83.0 ± 6.5 | 71.0 ± 0.1 * | 105.5 ± 3.5 | 95.0 ± 0.1 * | 61.0 ± 0.1 | 58.5 ± 3.5 |
3 | 81.5 ± 2.5 | 75.5 ± 2.1 * | 121.0 ± 0.1 | 118.5 ± 2.1 | 86.0 ± 0.1 | 77.5 ± 0.7 * |
4 | 72.5 ± 0.7 | 72.5 ± 2.1 | 97.5 ± 0.7 | 99.5 ± 7.8 | 69.5 ± 3.5 | 69.5 ± 7.8 |
5 | 92.5 ± 2.1 | 86.0 ± 1.4 * | 121.5 ± 0.7 | 120.5 ± 0.7 | 71.0 ± 1.4 | 72.0 ± 0.1 |
6 | 87.5 ± 2.1 | 77.5 ± 2.1 * | 116.0 ± 1.4 | 111.5 ± 0.7 * | 58.5 ± 2.1 | 63.5 ± 3.5 |
7 | 76.5 ± 0.7 | 74.0 ± 1.4 | 128.5 ± 4.9 | 119.5 ± 2.1 * | 79.0 ± 1.4 | 74.0 ± 1.4 * |
8 | 76.5 ± 2.1 | 78.5 ± 3.5 | 106.5 ± 3.5 | 99.6 ± 0.7 * | 67.5 ± 7.8 | 66.0 ± 0.1 |
9 | 80.5 ± 2.1 | 76.0 ± 4.2 | 127.5 ± 2.1 | 120.5 ± 0.7 * | 70.0 ± 4.2 | 67.5 ± 2.1 |
10 | 72.5 ± 3.5 | 76.0 ± 0.1 | 134.0 ± 5.7 | 126.5 ± 2.1 * | 63.0 ± 4.2 | 55.5 ± 4.9 * |
Site | Relative Theta Activity (μV2) | |||
---|---|---|---|---|
Inhalation | Mean | Standard Error | p-Value | |
Fp1: Left prefrontal | Before | 0.411 | 0.072 | 0.694 |
During | 0.387 | 0.073 | ||
Fp2: Right prefrontal | Before | 0.333 | 0.071 | 0.933 |
During | 0.339 | 0.050 | ||
F3: Left frontal | Before | 0.295 | 0.045 | 0.561 |
During | 0.324 | 0.049 | ||
F4: Right frontal | Before | 0.312 | 0.047 | 0.916 |
During | 0.317 | 0.052 | ||
T3: Left temporal | Before | 0.334 | 0.067 | 0.912 |
During | 0.339 | 0.064 | ||
T4: Right temporal | Before | 0.305 | 0.051 | 0.466 |
During | 0.337 | 0.056 | ||
P3: Left parietal | Before | 0.272 | 0.048 | 0.689 |
During | 0.289 | 0.053 | ||
P4: Right parietal | Before | 0.273 | 0.046 | 0.633 |
During | 0.298 | 0.052 | ||
O1: Left occipital | Before | 0.252 | 0.044 | 0.938 |
During | 0.248 | 0.053 | ||
O2: Right occipital | Before | 0.244 | 0.056 | 0.650 |
During | 0.272 | 0.060 |
Site | Relative Alpha Activity (μV2) | |||
---|---|---|---|---|
Inhalation | Mean | Standard Error | p-Value | |
Fp1: Left prefrontal | Before | 0.283 | 0.047 | 0.229 |
During | 0.323 | 0.051 | ||
Fp2: Right prefrontal | Before | 0.370 | 0.072 | 0.697 |
During | 0.342 | 0.046 | ||
F3: Left frontal | Before | 0.374 | 0.050 | 0.729 |
During | 0.390 | 0.051 | ||
F4: Right frontal | Before | 0.379 | 0.044 | 0.590 |
During | 0.404 | 0.050 | ||
T3: Left temporal | Before | 0.298 | 0.045 | 0.329 |
During | 0.327 | 0.054 | ||
T4: Right temporal | Before | 0.332 | 0.036 | 0.692 |
During | 0.349 | 0.051 | ||
P3: Left parietal | Before | 0.403 | 0.048 | 0.689 |
During | 0.422 | 0.057 | ||
P4: Right parietal | Before | 0.397 | 0.041 | 0.414 |
During | 0.437 | 0.056 | ||
O1: Left occipital | Before | 0.373 | 0.039 | 0.304 |
During | 0.429 | 0.063 | ||
O2: Right occipital | Before | 0.432 | 0.073 | 0.757 |
During | 0.451 | 0.074 |
Site | Relative Beta Activity (μV2) | |||
---|---|---|---|---|
Inhalation | Mean | Standard Error | p-Value | |
Fp1: Left prefrontal | Before | 0.198 | 0.035 | 0.619 |
During | 0.186 | 0.030 | ||
Fp2: Right prefrontal | Before | 0.186 | 0.032 | 0.683 |
During | 0.203 | 0.025 | ||
F3: Left frontal | Before | 0.221 | 0.024 | 0.349 |
During | 0.195 | 0.025 | ||
F4: Right frontal | Before | 0.212 | 0.021 | 0.435 |
During | 0.192 | 0.027 | ||
T3: Left temporal | Before | 0.240 | 0.032 | 0.518 |
During | 0.221 | 0.025 | ||
T4: Right temporal | Before | 0.240 | 0.026 | 0.306 |
During | 0.213 | 0.028 | ||
P3: Left parietal | Before | 0.221 | 0.023 | 0.462 |
During | 0.201 | 0.028 | ||
P4: Right parietal | Before | 0.226 | 0.022 | 0.192 |
During | 0.193 | 0.029 | ||
O1: Left occipital | Before | 0.247 | 0.024 | 0.225 |
During | 0.216 | 0.032 | ||
O2: Right occipital | Before | 0.219 | 0.033 | 0.194 |
During | 0.185 | 0.035 |
Site | Relative Gamma Activity (μV2) | |||
---|---|---|---|---|
Inhalation | Mean | Standard Error | p-Value | |
Fp1: Left prefrontal | Before | 0.108 | 0.024 | 0.851 |
During | 0.104 | 0.016 | ||
Fp2: Right prefrontal | Before | 0.112 | 0.022 | 0.883 |
During | 0.115 | 0.012 | ||
F3: Left frontal | Before | 0.110 | 0.021 | 0.343 |
During | 0.091 | 0.011 | ||
F4: Right frontal | Before | 0.097 | 0.015 | 0.590 |
During | 0.087 | 0.014 | ||
T3: Left temporal | Before | 0.128 | 0.025 | 0.548 |
During | 0.113 | 0.014 | ||
T4: Right temporal | Before | 0.123 | 0.024 | 0.358 |
During | 0.101 | 0.013 | ||
P3: Left parietal | Before | 0.104 | 0.018 | 0.452 |
During | 0.089 | 0.014 | ||
P4: Right parietal | Before | 0.103 | 0.017 | 0.134 |
During | 0.072 | 0.010 | ||
O1: Left occipital | Before | 0.127 | 0.022 | 0.301 |
During | 0.107 | 0.016 | ||
O2: Right occipital | Before | 0.105 | 0.024 | 0.537 |
During | 0.092 | 0.022 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-S.; Goo, Y.-M.; Cho, J.; Lee, J.; Lee, D.Y.; Sin, S.M.; Kil, Y.S.; Jeong, W.M.; Ko, K.H.; Yang, K.J.; et al. Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram. Molecules 2018, 23, 2063. https://doi.org/10.3390/molecules23082063
Kim D-S, Goo Y-M, Cho J, Lee J, Lee DY, Sin SM, Kil YS, Jeong WM, Ko KH, Yang KJ, et al. Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram. Molecules. 2018; 23(8):2063. https://doi.org/10.3390/molecules23082063
Chicago/Turabian StyleKim, Da-Som, Young-Min Goo, Jinju Cho, Jookyeong Lee, Dong Yeol Lee, Seung Mi Sin, Young Sook Kil, Won Min Jeong, Keon Hee Ko, Ki Jeung Yang, and et al. 2018. "Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram" Molecules 23, no. 8: 2063. https://doi.org/10.3390/molecules23082063
APA StyleKim, D. -S., Goo, Y. -M., Cho, J., Lee, J., Lee, D. Y., Sin, S. M., Kil, Y. S., Jeong, W. M., Ko, K. H., Yang, K. J., Kim, Y. G., Kim, S. G., Kim, K., Kim, Y. J., Kim, J. K., & Shin, E. -C. (2018). Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram. Molecules, 23(8), 2063. https://doi.org/10.3390/molecules23082063