Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscopy (SEM)
2.2. Nitrogen Sorption Measurements
2.3. Fourier Transformed Infra-Red (FTIR) Spectroscopy
2.4. FTIR-ATR Spectroscopy Performed on Hybrid Materials
2.5. Photoluminescence (PL)
2.6. Total Organic Carbon (TOC)
2.7. The Electro-Kinetic Potential
2.8. Catalytic Activity
3. Materials and Methods
3.1. Materials
3.1.1. Synthesis of SiO2 Matrices
3.1.2. The Formation of the Lipase-SiO2 Hybrid Structure
3.1.3. Enzymatic Assays
3.2. Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alarcos, N.; Cohen, B.; Marcin Ziółek, M.; Douhal, A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem. Rev. 2017, 117, 13639–13720. [Google Scholar] [CrossRef] [PubMed]
- Parvulescu, V.; Anastasescu, C.; Su, B.L. Highly selective oxidation of aromatic hydrocarbons (Styrene, Benzene and Toluene) with H2O2 over Ni, Ni-Cr and Ni-Ru modified MCM-41 catalysts. Stud. Surf. Sci. Catal. 2002, 142, 1213–1220. [Google Scholar]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Cao, L. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 2005, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.H.; Fang, M.; Tong, D.S.; Shao, P.; Xu, T.N.; Zhou, C.H. Immobilization of Candida rugosa lipase on hexagonal mesoporous silca and selective estrification in nonaqueous medium. Biochem. Eng. J. 2013, 70, 97–105. [Google Scholar] [CrossRef]
- Tran, D.T.; Chen, C.L.; Chang, J.S. Immobilization of Brukholderia sp. lipase on a ferric nanocomposite for biodiesel production. J. Biotechol. 2012, 158, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Anastasescu, C.; Anastasescu, M.; Zaharescu, M.; Balint, I. Platinum-modified SiO2 with tubular morphology as efficient membrane-type microreactors for mineralization of formic acid. J. Nanopart. Res. 2012, 14, 1198. [Google Scholar] [CrossRef]
- Anastasescu, C.; Zaharescu, M.; Balint, I. Unexpected photocatalytic activity of simple and Platinum modified tubular SiO2 for the oxidation of oxalic acid to CO2. Catal. Lett. 2009, 132, 81–86. [Google Scholar] [CrossRef]
- Tran, D.N.; Balkus, K., Jr. Perspective of recent progress in immobilization of enzymes. ACS Catal. 2011, 1, 956–968. [Google Scholar] [CrossRef]
- Tortajada, M.; Ramon, D.; Beltran, D.; Amoros, P. Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization. J. Mater. Chem. 2005, 15, 3859–3868. [Google Scholar] [CrossRef]
- Blanco, R.M.; Terreros, P.; Férnandez-Pérez, M.; Otero, C.; Díaz-González, G. Functionalization of mesoporous silica for lipase immobilization. Characterization of the support and the catalyst. J. Mol. Catal. B Enzym. 2004, 30, 83–93. [Google Scholar] [CrossRef]
- Guisan, J.M.; Sabuquillo, P.P.; Fernandez-Lafuente, R.; Fernandez-Lorente, G.; Mateo, C.; Halling, P.J.; Kennedy, D.; Miyata, E.; Re, D. Preparation of new lipase derivatives with high activity-stability in anhydrous media: Adsorption on hydrophobic supports plus hydrophilization with polyethylenimine. J Mol. Catal. B Enzym. 2001, 11, 817–824. [Google Scholar] [CrossRef]
- Aissaoui, N.; Bergaoui, L.; Boujday, S.; Lambert, J.F.; Méthiever, C.; Landoulsi, J. Enzyme Immobilization on silane-modified surface through short linkers: Fate of interfacial phases and impact on catalytic activity. Langmuir 2014, 30, 4066–4077. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K.; Phadtare, S.; Vinod, V.P.; Kumar, A.; Rao, M.; Chaudhari, R.V.; Sastry, M. Gold nanoparticles assembled on amine-functionalized Na-Y zeolite: A biocompatible surface for enzyme immobilization. Langmuir 2003, 19, 3858–3863. [Google Scholar] [CrossRef]
- Nakamura, H.; Matsui, Y. Silica gel nanotubes obtained by the sol-gel method. J. Am. Chem. Soc. 1995, 117, 2651–2652. [Google Scholar] [CrossRef]
- Anastasescu, C.; Anastasescu, M.; Teodorescu, V.S.; Gartner, M.; Zaharescu, M. SiO2 nanospheres and tubes obtained by sol gel method. J. Non-Cryst. Solids. 2010, 356, 2634–2640. [Google Scholar] [CrossRef]
- Anastasescu, C.; Zaharescu, M.; Angelescu, D.; Munteanu, C.; Bratan, V.; Spataru, T.; Negrila, C.; Spataru, N.; Balint, I. Defect-related light absorption, photoluminiscence and photocatalytic activity of SiO2 with tubular morphology. Sol. Energy Mater. Sol. Cell 2017, 159, 325–335. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Smit, M.; Dunn, B.; Zink, J.I. Stabilization of creatine kinase encapsulated in silicate sol-gel materials and unusual temperature effects on its activity. Chem. Mater. 2002, 14, 4300–4306. [Google Scholar] [CrossRef]
- Ruscher, C.H.; Bannat, I.; Feldhoff, A.; Ren, L.; Wark, M. SiO2 nanotubes with nanodispersed Pt in the walls. Microporous Mesoporous Mater. 2007, 99, 30–36. [Google Scholar] [CrossRef]
- Anastasescu, C.; Mihaiu, S.; Preda, S.; Zaharescu, M. 1D Oxide Nanostructures Obtained by Sol-Gel and Hydrothermal Methods; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-32988-8. [Google Scholar]
- Lopez, T.; Romero, A.; Gomez, R. Metal-support interaction in Pt/SiO2 catalysts prepared by sol gel method. J. Non-Cryst. Solids 1991, 127, 105–113. [Google Scholar] [CrossRef]
- Bey Temsamani, M.; Maeck, M.; El Hassani, I.; Hurwitz, H.D. Fourier Transform Infrared investigation of water states in Aerosol-OT reverse micelles as a function of counterionic nature. J. Phys. Chem. B 1998, 102, 3335–3340. [Google Scholar] [CrossRef]
- Pickup, D.M.; Mountjoy, G.; Wallidge, G.W.; Anderson, R.; Cole, J.M.; Newport, R.J.; Smith, M.E. A structural study of (TiO2)x(SiO2)1−x (x = 0.18, 0.30 and 0.41) xerogels prepared using acetylacetone. J. Mater. Chem. 1999, 9, 1299–1305. [Google Scholar] [CrossRef]
- Orcel, G.; Phalippou, J.; Hench, L.L. Structural changes of silica xerogels during low temperature dehydration. J. Non-Cryst. Solids 1986, 88, 114–130. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Li, Z.; Søgaard, E.G. Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film. Appl. Surf. Sci. 2009, 255, 8054–8062. [Google Scholar] [CrossRef]
- Sun, B.; Sun, S.-Q.; Li, T.; Zhang, W.-Q. Preparation and antibacterial activities of Ag-doped SiO2–TiO2 composite films by liquid phase deposition (LPD) method. J. Mater. Sci. 2007, 42, 10085–10089. [Google Scholar] [CrossRef]
- Gustafsson, H.; Thorn, C.; Holmberg, K. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Colloids Surf. B Biointerfaces 2011, 87, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Jitianu, A.; Crisan, M.; Meghea, A.; Rau, I.; Zaharescu, M. Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3-SiO2 system, obtained by sol–gel method. J. Mater. Chem. 2002, 12, 1401–1407. [Google Scholar] [CrossRef]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2004; ISBN 9780470854273. [Google Scholar]
- Shikha, S.; Thakur, K.G.; Bhattacharyya, M.S. Facile fabrication of lipase to amine functionalized gold nanoparticles to enhance stability and activity. RSC Adv. 2017, 7, 42845–42855. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, H.; Johansson, E.M.; Barrabino, A.; Odén, M.; Holmberg, K. Immobilization of lipase from Mucor miehei and Rhizopus oryzae into mesoporous silica—The effect of varied particle size and morphology. Colloids Surf. B Biointerfaces 2012, 100, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.; Byrne, T.; Woelfel, K.J.; Meany, J.E.; Spyridis, G.T.; Pocker, Y. The Hydrolysis of p-nitrophenyl acetate: A versatile reaction to study enzyme kinetics. J. Chem. Educ. 1994, 71, 715. [Google Scholar] [CrossRef]
- Buncel, E.; Cannes, C.; Chatrousse, A.-P.; Terrier, F. Reactions of oximate α-nucleophiles with esters: evidence from solvation effects for substantial decoupling of desolvation and bond formation. J. Am. Chem. Soc. 2002, 124, 8766–8767. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, H.; Aoyagi, T.; Hazato, T.; Uotani, K.; Kojima, F.; Hamada, M.; Tacheuchi, T. Esterastin, an inhibitor of esterase, produced by Actinomycetes. J. Antibiot. 1978, 31, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bromberg, L.; Hatton, T.A.; Rutledge, G.C. Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 2007, 48, 4675–4682. [Google Scholar] [CrossRef]
- O’Brien, R.W.; Ward, D.N. The electrophoresis of a spheroid with a thin double layer. J. Colloid Interface Sci. 1988, 121, 402–413. [Google Scholar] [CrossRef]
Sample Availability: Samples are available from the authors at their location. |
Wavenumber (cm−1) | Assignation |
---|---|
1124 | Si-O stretching in SiO2 [16] |
~1200 (shoulder) | asymmetric vibration of Si-O-Si [19] |
~980–960 (shoulder) | silanol groups (Si-OH) [21] |
847 | νs(Si-O-Si) [20] |
484 | δ(Si-O-Si) [20] |
1650 | H2O [20,28] |
3350–3600 | structural hydroxyls and free OH groups [22,28] |
Identified Band (cm−1) | Assignment |
---|---|
3271 | N-H (γ) |
2930 | C-H (γ) |
1635 | Amide I, N-H def., (δ) |
1521 | Amide II, N-H stretch., (γ) |
1245 | Amide III, C-N stretch., (γ) |
1060 | C-O-C (γ) |
1395 | C-OH bending |
650–600 | C-C bending |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasescu, C.; Preda, S.; Rusu, A.; Culita, D.; Plavan, G.; Strungaru, S.; Calderon-Moreno, J.M.; Munteanu, C.; Gifu, C.; Enache, M.; et al. Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity. Molecules 2018, 23, 1362. https://doi.org/10.3390/molecules23061362
Anastasescu C, Preda S, Rusu A, Culita D, Plavan G, Strungaru S, Calderon-Moreno JM, Munteanu C, Gifu C, Enache M, et al. Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity. Molecules. 2018; 23(6):1362. https://doi.org/10.3390/molecules23061362
Chicago/Turabian StyleAnastasescu, Crina, Silviu Preda, Adriana Rusu, Dana Culita, Gabriel Plavan, Stefan Strungaru, Jose Maria Calderon-Moreno, Cornel Munteanu, Catalina Gifu, Mirela Enache, and et al. 2018. "Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity" Molecules 23, no. 6: 1362. https://doi.org/10.3390/molecules23061362
APA StyleAnastasescu, C., Preda, S., Rusu, A., Culita, D., Plavan, G., Strungaru, S., Calderon-Moreno, J. M., Munteanu, C., Gifu, C., Enache, M., Socoteanu, R., Angelescu, D., Anastasescu, M., Gartner, M., Balint, I., & Zaharescu, M. (2018). Tubular and Spherical SiO2 Obtained by Sol Gel Method for Lipase Immobilization and Enzymatic Activity. Molecules, 23(6), 1362. https://doi.org/10.3390/molecules23061362