UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats
Abstract
1. Introduction
2. Results
2.1. Effects of KDZI on Pathological Brain Morphology Alterations in MCAO/R Rats
2.2. Effects of KDZI on Infarct Size in MCAO/R Model Rats
2.3. Metabolic Profiling of Plasma Sample
2.4. Multivariate Data Analysis of UPLC-LTQ/Orbitrap Data
2.5. Identification of Metabolites
2.6. Structure Identification
2.7. Metabolic Pathway Analysis
3. Discussion
3.1. Characterized Potential Biomarkers
3.2. Possible Mechanism of Anti-Cerebral Ischaemia Reperfusion Effect KDZI
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals and Grouping
4.3. Middle Cerebral Artery Occlusion
4.4. The Stainings of TTC and H&E
4.5. Plasma Pretreatment and UHPLC-LTQ/Orbitrap Analysis
4.6. Data Processing and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, A.S.; Johnston, S.C. Claiborne Johnston. Global Variation in the Relative Burden of Stroke and Ischemic Heart Disease. Circulation 2011, 124, 314–323. [Google Scholar]
- Pedata, F.; Dettori, I.; Coppi, E.; Melani, A.; Fusco, I.; Corradetti, R.; Pugliese, A.M. Purinergic signalling in brain ischemia. Neuropharmcaology 2016, 104, 105–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, B.; Wang, W.; Lee, L.; Zhang, S.; Kong, L. Stroke in China: Epidemiology, prevention, and management strategies. Lancet Neurol. 2007, 6, 456–464. [Google Scholar] [CrossRef]
- Atsushi, S.; Carolina, M.M.; Purnima, N.; Nishi, T.; Song, Y.S.; Yu, F.; Liu, J.; Lee, Y.S.; Nito, C.; Kamada, H.; et al. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol. Neurobiol. 2005, 31, 105–116. [Google Scholar]
- Atsuko, K.; Luca, S. Mitochondria: From cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014, 24, 761–770. [Google Scholar]
- Dziedzic, T. Systemic inflammation as a therapeutic target in acute ischemic stroke. Expert Rev. Neurother. 2015, 15, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nagai, N.; Umemura, K. A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front. Cell. Neurosci. 2016, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, J.; Jin, W.; Li, X.; Zhang, Y. Danhong Injection Combined With t-PA Improves Thrombolytic Therapy in Focal Embolic Stroke. Front. Pharmacol. 2018, 308, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jiangsu Medical College. Chinese Dictionary; Shanghai Science and Technology Press: Shanghai, China, 1977. [Google Scholar]
- Liu, R.; Zhang, X.; Wang, F.; Shang, Z.; Wang, F.; Liu, Y.; Lu, J.; Zhang, J. Rapid screening and identification of sesquiterpene lactones in Kudiezi injection based on high-performance liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry. Chin. J. Natl. Med. 2018, 16, 150–160. [Google Scholar] [CrossRef]
- Liu, X.; Tao, Y.; Wang, F.; Yao, T.; Fu, C.; Zheng, H.; Yan, Y.; Liang, X.; Jiang, X.; Zhang, Y. Kudiezi injection mitigates myocardial injury induced by acute cerebral ischemia in rats. BMC Complement. Altern. Med. 2017, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Yin, R.; Chen, X. Progress in research on the chemical constituents and pharmcaological effects of Kudie. Northwest Pharm. J. 2006, 21, 94–96. [Google Scholar]
- Chen, C.; Jia, H.; Lv, S.; Xu, C. Protective effect of Kudiezi on acute cerebral ischemic reperfusion injury in rats. Chin. J. Clin. Pharmcaol. 2012, 28, 196–199. [Google Scholar]
- Tan, A.; Qian, F.; Zhu, Y.; Wang, Y.; Li, X. Kudie injection on cerebral ischemia/reperfusion injury in rats. Chin. J. Hosp. Pharm. 2009, 29, 1178–1180. [Google Scholar]
- Wang, C.X.; Liu, Y.L.; Zhao, Q. Kudizi injrction on the protective effect of cerebral ischemia. Hebei Med. 2005, 27, 860–861. [Google Scholar]
- Chen, F.Q.; Li, Q.; Pan, C.S.; Liu, Y.Y.; Yan, L.; Sun, K.; Mao, X.W.; Mu, H.N.; Wang, M.X.; Wang, C.S.; et al. Kudiezi injection alleviates blood–brain barrier disruption after is chemia-reperfusion in rats. Microcirculation 2016, 23, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. Metabonomics: Understanding the metabolic responses of living system to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Connelly, J.; Lindon, J.C.; Holmes, E. Metabonomics: A platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 2002, 1, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Holmes, E.; Nicholson, J.K. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res. 2006, 23, 1075–1088. [Google Scholar] [PubMed]
- Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.; Clarke, S.; Schofield, P.M.; McKilligin, E.; Mosedale, D.E.; et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1HNMR-based metabonomics. Nat. Med. 2002, 8, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
- Makinen, V.P.; Soininen, P.; Forsblom, C.; Parkkonen, M.; Ingman, P.; Kaski, K.; Groop, P.H.; FinnDiane Study Group; Ala-Korpela, M. 1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death. Mol. Syst. Biol. 2008, 4, 167. [Google Scholar] [CrossRef] [PubMed]
- McPhail, M.J.; Shawcross, D.L.; Lewis, M.R.; Coltart, I.; Want, E.J.; Antoniades, C.G.; Veselkov, K.; Triantafyllou, E.; Patel, V.; Pop, O.; et al. Multivariate metabotyping of plasma accurately predicts survival in patients with decompensated cirrhosis. J. Hepatol. 2016, 64, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, Z.; Lu, X.; Yang, X.; Yin, P.; Kong, H.; Yu, Y.; Xu, G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal. Chim. Acta 2009, 633, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Tan, Y.X.; Yin, P.Y.; Ye, G.Z.; Gao, P.; Lu, X.; Wang, H.Y.; Xu, G.W. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013, 73, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Human Metabolome Database (HMDB). Available online: http://www.hmdb.ca (accessed on 20 December 2017).
- Metlin. Available online: http://metlin.scripps.edu/ (accessed on 20 December 2017).
- MassBank. Available online: http://www.massbank.jp/ (accessed on 20 December 2017).
- Lipidbank. Available online: http://www.lipidbank.jp/ (accessed on 20 December 2017).
- KEGG. Available online: http://www.genome.jp/kegg/ (accessed on 20 December 2017).
- Liu, S.; Cai, W.; Wang, F.; Liu, Y.; Shang, Z.; Zhang, X.; Wang, Z.; Lu, J.; Zhang, J. UHPLC-LTQ-Orbitrap-based metabolomics coupled with metabolomics pathway analysis method for exploring the protection mechanism of Kudiezi injection in a rat anti-ischemic cerebral reperfusion damage model. Chin. J. Natl. Med. 2017, 15, 0955–0960. [Google Scholar] [CrossRef]
- Liu, H.; Pu, H.; Yao, Q. A Study of Protective Effect of Taurine on Brain Cells with Ischemic Reperfusion Damage in Rats. Chin. J. Child Health 1999, 17, 196–197. [Google Scholar]
- Yang, Z.; Li, P. Effect of Taurochenodeoxycholic Acid on Oxygen Free Radical Metabolism in Mice. Chin. Vet. Drug J. 2006, 40, 32–35. [Google Scholar]
- Djuricic, B.; Olson, S.R.; Assaf, H.M.; Whittingham, T.S.; Lust, W.D.; Drewes, L.R. Formation of free choline in brain tissue during in vitro energy deprivation. J. Cerebr. Blood Flow Metab. 1991, 11, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Kozuka, M.; Iwata, N. Changes in levels of monoamines and their metabolites in incompletely ischemic brains of spontaneously hypertensive rats. Neurochem. Res. 1995, 20, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Longa, E.Z.; Weinstein, P.R.; Carlson, S.; Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Tamura, A.; Graham, D.I.; McCulloch, J.; Teasdale, G.M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 1981, 1, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Dogan, A.; Tunc, E.; Ozturk, M.; Kerman, M.; Akhan, G. Electrocardiographic changes in patients with ischaemic stroke and their prognostic importance. Int. J. Clin. Pract. 2004, 58, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Joshia, C.N.; Jainb, S.K.; Murthy, P.S.R. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res. Protoc. 2004, 13, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.L.; Li, H.; Bai, M.; Miao, M.S. Effect of total flavonoids of Radix Ilicis pubescentis on cerebral ischemia reperfusion model. Saudi J. Biol. Sci. 2017, 24, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A 2014, 1353, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.Y.; Cao, R.; Lu, X.; Zhao, S.M.; Fekete, A.; Huang, Q.; Schmitt Kopplin, P.; Wang, Y.S.; Xu, Z.L. Serum 27-nor-5 beta-cholestane-3,7,12,24,25 pentol glucuronide discovered by metabolomics as potential diagnostic biomarker for epithelium ovarian cancer. J. Proteome Res. 2011, 10, 2625–2632. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Zhang, L.; Zhao, B.S.; Zhang, Z.X.; Qin, L.L.; Zhang, Q.Q.; Wang, Q.; Lu, Z.W.; Gao, X.Y. Hypothalamus metabolomic profiling to elucidate the tissuetargeted biochemical basis of febrile response in yeast-induced pyrexia rats. Chem. Biol. Interact. 2015, 231, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.Y.; Zhao, X.J.; Li, Q.R.; Wang, J.S.; Li, J.S.; Xu, G.W. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J. Proteome Res. 2006, 5, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds used in the study are available from the authors. |
tR-m/z | Precision (RSD, %) | Stability (RSD, %) | Repeatability (RSD, %) | |||
---|---|---|---|---|---|---|
tR | Peak Intensity | tR | Peak Intensity | tR | Peak Intensity | |
Positive | ||||||
2.99–453.34 | 0.25 | 3.41 | 1.88 | 7.70 | 0.59 | 6.51 |
5.38–215.01 | 0.08 | 7.10 | 0.33 | 7.28 | 0.20 | 6.98 |
9.89–319.23 | 0.17 | 5.80 | 0.13 | 3.72 | 0.17 | 6.51 |
14.38–582.38 | 0.14 | 5.35 | 0.23 | 6.22 | 0.28 | 4.52 |
17.44–255.23 | 0.035 | 5.14 | 0.09 | 6.89 | 0.04 | 5.11 |
Negative | ||||||
0.79–269.0 | 0.65 | 7.49 | 0.56 | 7.07 | 0.56 | 6.83 |
11.33–544.34 | 0.09 | 4.99 | 0.07 | 4.23 | 0.09 | 4.99 |
12.06–478.34 | 0.15 | 2.91 | 0.14 | 2.30 | 0.15 | 3.45 |
14.63–341.32 | 0.11 | 7.33 | 0.12 | 6.31 | 0.11 | 8.33 |
19.42–654.33 | 0.03 | 4.94 | 0.08 | 5.91 | 0.08 | 6.44 |
No. | tR | m/z | Formula | Identification | Adduct Type | Flod Change | |
---|---|---|---|---|---|---|---|
MCAO/R/Sham | MCAO/R + KDZI/MCAO/R | ||||||
1 | 0.93 | 118.0856 | C5H11NO2 | L-Valine | M + H | 1.40 | 0.65 |
2 | 1.617 | 132.1013 | C6H13NO2 | Isoleucine | M + H | 0.68 | 1.47 |
3 | 2.829 | 166.0856 | C9H11NO2 | L-Phenylalanine | M + H | 0.66 | 1.45 |
4 | 5.51 | 205.0965 | C11H12N2O2 | L-Tryptophan | M + H | 0.81 | 1.36 |
5 | 1.89 | 192.0655 | C10H9NO3 | 5-Hydroxyindole-3-acetic acid | M + H | 1.34 | 0.64 |
6 | 8.585 | 132.1013 | C6 H13 NO2 | Leucine | M + H | 0.68 | 1.44 |
7 | 28.55 | 480.28 | C26H45NO6S | Taurochenodesoxycholic acid | M - H2O - H | 0.71 | 1.43 |
8 | 143 | 283.2623 | C18H34O2 | Oleic acid | M - H | 0.78 | 1.56 |
9 | 33.932 | 305.2468 | C20H32O2 | Arachidonic acid | M + H | 0.63 | 1.27 |
10 | 35.14 | 283.2623 | C18H36O2 | Stearic acid | M - H | 0.71 | 1.39 |
11 | 23.119 | 468.3067 | C22H46NO7P | PE (17:0/0:0) | M + H | 0.61 | 1.38 |
12 | 26.884 | 482.3222 | C23H48NO7P | LysoPE (0:0/18:0) | M + H | 0.81 | 1.34 |
13 | 37.372 | 482.3221 | C23H48NO7P | LysoPE (18:0/0:0) | M + H | 0.51 | 1.31 |
14 | 25.379 | 482.3225 | C23H48NO7P | LysoPC (15:0) | M + H | 0.61 | 1.20 |
15 | 29.152 | 496.3376 | C24H50NO7P | LysoPC (16:0) | M + H | 0.78 | 1.45 |
16 | 33.86 | 508.3738 | C26H54NO6P | LysoPC (p-18:0) | M + H | 0.81 | 1.29 |
17 | 34.499 | 510.3526 | C25H52NO7P | LysoPE (0:0/20:0) | M + H | 0.74 | 1.32 |
18 | 32.943 | 510.3526 | C25H52NO7P | LysoPC (17:0) | M + H | 0.69 | 1.42 |
19 | 24.784 | 518.3221 | C26H48NO7P | LysoPC (18:3(6z, 9z, 12z)) | M + H | 0.89 | 1.23 |
20 | 29.081 | 518.32 | C26H48NO7P | PC(18:3(9z, 12z, 15z)/0:0) | M + H | 0.82 | 1.42 |
21 | 31.039 | 522.3535 | C26H52NO7P | LysoPC (18:1(9z)) | M + H | 0.71 | 1.28 |
22 | 33.776 | 522.3535 | C26H52NO7P | LysoPC (18:1(11z)) | M + H | 0.63 | 1.32 |
23 | 15.814 | 536.333 | C27H54NO7P | LysoPE (0:0/22:1(13z)) | M + H | 0.89 | 1.41 |
24 | 17.288 | 536.3331 | C27H54NO7P | LysoPE (22:1(13z)/0:0) | M + H | 0.71 | 1.24 |
25 | 35.514 | 536.3695 | C27H54NO7P | LysoPE (0:0/22:1(13Z)) | M + H | 0.83 | 1.42 |
26 | 32.715 | 538.3848 | C27H56NO7P | LysoPE (0:0/22:0) | M + H | 0.79 | 1.23 |
27 | 30.365 | 538.3858 | C27H56NO7P | LysoPE (22:0/0:0) | M + H | 0.70 | 1.32 |
28 | 24.365 | 542.3221 | C28H48NO7P | LysoPC (20:5(5z, 8z, 11z, 14z, 17z)) | M + H | 0.61 | 1.33 |
29 | 30.525 | 546.3532 | C28H52NO7P | LysoPC (20:3(5z, 8z, 11z)) | M + H | 0.74 | 1.34 |
30 | 29.248 | 546.3534 | C28H52NO7P | LysoPC (20:3(8z, 11z, 14z)) | M + H | 0.82 | 1.31 |
31 | 34.412 | 548.369 | C28H54NO7P | LysoPC (20:2(11z, 14z)) | M + H | 0.82 | 1.34 |
32 | 29.521 | 570.3532 | C30H52NO7P | LysoPC (22:5(7z, 10z, 13z, 16z, 19z)) | M + H | 0.81 | 1.34 |
Pathyway Name | In Set | p-Value (×103) | FDR Correction (×103) |
---|---|---|---|
Tryptophan metabolism | 2 | 0 | 0 |
Fatty acid elongation unsaturated | 3 | 0.00000296 | 0.0000266 |
Biosynthesis of unsaturated fatty acids | 3 | 0.00000723 | 0.000803 |
Valine, leucine and isoleucine degradation | 3 | 0.0000744 | 0.00156 |
Valine, leucine and isoleucine biosynthesis | 3 | 0.000422 | 0.00814 |
Aminoacyl-tRNA biosynthesis | 4 | 0.00119 | 0.044 |
Biosynthesis of secondary metabolites | 5 | 0.00157 | 0.0173 |
Glucosinolate biosynthesis | 5 | 0.0332 | 0.38 |
Metabolic pathways | 3 | 0.116 | 0.522 |
jasmonoyl-amino acid conjugates biosynthesis I | 4 | 3.29 | 7.4 |
jasmonoyl-amino acid conjugates biosynthesis II | 3 | 6.53 | 28.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Liu, C.; Wang, M.; Ma, Q.; Li, Y.; Wang, T.; Zhao, B. UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats. Molecules 2018, 23, 1315. https://doi.org/10.3390/molecules23061315
Wang C, Liu C, Wang M, Ma Q, Li Y, Wang T, Zhao B. UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats. Molecules. 2018; 23(6):1315. https://doi.org/10.3390/molecules23061315
Chicago/Turabian StyleWang, Chunguo, Chenyue Liu, Min Wang, Quantao Ma, Yaqi Li, Ting Wang, and Baosheng Zhao. 2018. "UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats" Molecules 23, no. 6: 1315. https://doi.org/10.3390/molecules23061315
APA StyleWang, C., Liu, C., Wang, M., Ma, Q., Li, Y., Wang, T., & Zhao, B. (2018). UPLC-HRMS-Based Plasma Metabolomic Profiling of Novel Biomarkers by Treatment with KDZI in Cerebral Ischemia Reperfusion Rats. Molecules, 23(6), 1315. https://doi.org/10.3390/molecules23061315