Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Polyphenol Content
2.2. Total Flavonoid Content
2.3. Condensed Tannins Content
2.4. Antioxidant Activity
2.5. HPLC-MS/MS Identification of Polyphenolic Compounds
Identification of Phenolic Compounds
2.6. Macroelement and Microelement Contents
3. Materials and Methods
3.1. Plant Material
3.2. Extraction
3.3. Microplate Determination of Total Polyphenol Content
3.4. Microplate Determination of Total Flavonoid Content
3.5. Microplate Determination of Total Condensed Tannins Content
3.6. Microplate Determination of Antioxidant Activity Using DPPH
3.7. HPLC-ESI-MS/MS Analysis of Polyphenolic Compounds
3.8. Determination of Macroelement and Microelement Contents
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yin, D.D.; Yuan, R.Y.; Wu, Q.; Li, S.S.; Shao, S.; Xu, Y.J.; Hao, X.H.; Wang, L.S. Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities. Food Chem. 2015, 187, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Bakr, R.O.; El-Naa, M.M.; Zaghloul, S.S.; Omar, M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: Hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complement. Altern. Med. 2017, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.K.M.M.; Sethiya, N.K.; Mishra, S.H. A comprehensive review on Nymphaea stellata: A traditionally used bitter. J. Adv. Pharm. Technol. Res. 2010, 1, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Russo, G.L.; Tedesco, I.; Spagnuolo, C.; Russo, M. Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin. Cancer Biol. 2017, 46, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Nama, M.; Hwanga, G.-S. Metabolic Alterations in Two Cirsium Species Identified at Distinct Phenological Stages using UPLC-QTOF/MS. Phytochem. Anal. 2018, 29, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Am. Soc. Nutr. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Whole-grain products and antioxidants. Cereal Foods World 2000, 45, 59–63. [Google Scholar]
- Dicko, M.H.; Gruppen, H.; Traore, A.S.; Voragen, A.G.J.; van Berkel, W.J.H. Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol. Mol. Biol. Rev. 2006, 1, 21–38. [Google Scholar]
- Doughari, J.H. Phytochemicals: Extraction Methods, Basic Structures and Mode of Action as Potential Chemotherapeutic Agents. In A Global Perspective of Their Role in Nutrition and Health; Rao, V., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0296-0. [Google Scholar]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening Seeds of some Scottish Plants for Free Radical Scavenging Activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Flores-Vallejo, R.C.; Cardoso-Taketa, A.; Villarreal, M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2016, 208, 264–329. [Google Scholar] [CrossRef] [PubMed]
- Parimala, M.; Shoba, F.G. Phytochemical analysis and in vitro antioxidant activity of hydroalcoholic seed extract of Nymphaea nouchali Burm. f. Asian Pac. J. Trop. Biomed. 2013, 3, 887–895. [Google Scholar] [CrossRef]
- Bakr, R.O.; Wasfi, R.; Swila, N.; Sallam, I.E. Characterization of the bioactive constituents of Nymphaea alba rhizomes and evaluation of anti-biofilm as well as antioxidant and cytotoxic properties. J. Med. Plants Res. 2016, 10, 390–401. [Google Scholar] [CrossRef]
- Wei, S.-D.; Chen, R.-Y.; Liao, M.-M.; Tu, N.-W.; Zhou, H.-C.; Lin, Y.-M. Antioxidant condensed tannins from Machilus pauhoi leaves. J. Med. Plants Res. 2011, 5, 796–804. [Google Scholar]
- Dicko, M.H.; Hilhorst, R.; Gruppen, H.; Traore, A.S.; Laane, C.; van Berkel, W.J.H.; Voragen, A.G.J. Comparison of Content in Phenolic Compounds, Polyphenol Oxidase, and Peroxidase in Grains of Fifty Sorghum Varieties from Burkina Faso. J. Agric. Food Chem. 2002, 50, 3780–3788. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Xu, W.; Huang, M.; Xu, W.; Li, H.; Ye, M.; Zhang, X.; Chu, K. Qualitative and Quantitative Analysis of Phenolic Acids, Flavonoids and Iridoid Glycosides in Yinhua Kanggan Tablet by UPLC-QqQ-MS/MS. Molecules 2015, 20, 12209–12228. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, L.M.; Lewis, B.A.; Brown, D.L.; Rodriguez, E.; Obendorf, R.L. Characterization of phenolics by LC–UV/Vis, LC–MS/MS and sugars by GC in Melicoccus bijugatus Jacq. ‘Montgomery’ fruits. Food Chem. 2008, 111, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Hamad, H.O.; Alma, M.H.; Gulcin, I.; Yılmaz, M.A.; Karaoğul, E. Evaluation of Phenolic Contents and Bioactivity of Root and Nutgall Extracts from Iraqian Quercus infectoria Olivier. Rec. Nat. Prod. 2017, 11, 205–210. [Google Scholar]
- Fang, T.; Wang, Y.; Ma, Y.; Su, W.; Bai, Y.; Zhao, P. A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma. J. Pharm. Biomed. Anal. 2006, 40, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Li, Q.M.; van den Heuvel, H.; Claeys, M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1357–1364. [Google Scholar] [CrossRef]
- Kalny, P.; Fijałek, Z.; Daszczuk, A.; Ostapczuk, P. Determination of selected microelements in polish herbs and their infusions. Sci. Total Environ. 2007, 381, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Lemberkovics, E.; Czinner, E.; Szentmihalyi, K.; Balazs, A.; Szoke, E. Comparative evaluation of Helichrysi flos herbal extracts as dietary sources of plant polyphenols, and macro- and microelements. Food Chem. 2002, 78, 119–127. [Google Scholar] [CrossRef]
- Sylvester, O.; Antoinette, O.; Uchenna, N. Anti-infective antioxidant minerals levels in uncomplicated pregnancy in some rural communities of South East Nigeria. J. Med. Nutr. Nutraceuticals 2013, 2, 52–57. [Google Scholar] [CrossRef]
- Dah-Nouvlessounon, D.; Adjanohoun-Sagbadja, H.; Diarrasouba, N.; Sina, H.; Noumavo, P.A.; Baba-Moussa, F.; Adjanohoun, A.; Gbenou, J.D.; Baba-Moussa, L. Antimicrobial, Antioxidant, Cytotoxic Activities and Phytochemical Assessment of Cola acuminata used in Benin. Int. J. Pharm. Pharm. Sci. 2015, 7, 102–109. [Google Scholar]
- Zou, Y.; Chang, S.K.C.; Gu, Y.; Qian, S.Y. Antioxidant Activity and Phenolic Compositions of Lentil (Lens culinaris var. Morton) Extract and Its Fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Total Condensed Tannin Content | Part of Plant | ||||
---|---|---|---|---|---|
mg EqC/g or Negative (−) | |||||
Fruit | Flower | Leaf | Stem | Root | |
Methanolic extracts | 0.5 ± 0.0 | - | 0.01 ± 0.0 | 2.9 ± 0.1 | 1.4 ± 0.0 |
No. | Compounds | TR a (min) | Formula | [M-H]− b m/z | Mass Error (ppm) | References | |
---|---|---|---|---|---|---|---|
Parent Ion | Fragment Ion (Relative Abundance %) | ||||||
1 | HHDP c-hexoside | 6.15 | - | 481.06 | 301.14 (50), 463.20 (40) | −1.85 | [2,15,19] |
2 | Quinic acid | 6.16 | C7H12O6 | 191.06 | 127.07 (33), 173.12 (50) | −2.21 | [15] |
3 | Vanillic acid | 15.35 | C8H8O4 | 167.00 | 123.00 (30), 125.00 (100), 152.00 (10) | −0.91 | [19] |
4 | Gallic acid | 16.50 | C7H6O5 | 169.00 | 125 (100) | −3.42 | [15,19,20] |
5 | Castalin | 16.93 | C27H20O18 | 631.06 | 301.29 (100), 299.12 (37) | −1.52 | [2] |
6 | X1 d | 17.29 | - | - | 613.20 (50), 301.13 (100), 631.15 (30) | −2.03 | - |
7 | Chlorogenic acid | 18.05 | C16H18O9 | 355.00 | 163.00 (70) | −4.52 | [20] |
8 | Corilagin | 18.17 | C27H22O18 | 633.07 | 301.14 (100), 589.22 (10) | −0.76 | 2 |
9 | Brevifolin | 19.53 | C10H12O4 | 247.02 | 203.11 (75), 175.13 (20) | −4.28 | [2,15] |
10 | Caffeic acid | 20.37 | C9H8O4 | 181.00 | 163.00 (95) | −3.98 | [20] |
11 | p-Coumaric acid | 23.85 | C9H8O3 | 163.00 | 145.00 (30), 119.00 (10), 103.00 (30), 89.00 (10), 127.00 (8) | −1.96 | [21] |
12 | Tannic acid | 24.61 | C76H52O46 | 183.50 | 123.70 (100) | −2.45 | [22] |
13 | Rutin | 26.16 | C27H30O16 | 609.20 | 301.00 (100) | −2.5 | [20] |
14 | Ellagic acid | 27.31 | C14H6O8 | 301.15 | 257.22 (100), 229.10 (50) | −0.1 | [15,19] |
15 | Ellagic acid rhamnosyl | 27.80 | C20H16O12 | 447.02 | 359.17 (50), 403.20 (30), 385.11 (10), 315.25 (5), 301.13 (7), 275.18 (100) | −0.52 | [2] |
16 | Quercetin | 31.94 | C15H10O7 | 301.00 | 151.00 (70) | −0.37 | [20] |
17 | Ellagic acid-pentoside | 32.07 | C19H14O12 | 433.00 | 291.15 (21), 405.17 (57), 301.18 (90), 275.23 (8), 247.00 (40), 229.00 (5) | −2.51 | [2,19] |
18 | Naringenin | 32.46 | C15H12O5 | 271.00 | 151.00 (75), 177.00 (100), 165.00 (52), 107.00 (18), 125.00 (25) | −1.98 | [19] |
19 | Naringin | 34.30 | C27H32O14 | 579.00 | 151.00 (50), 119.00 (6), 271.00 (100) | −2.68 | [23] |
20 | Kaempferol | 36.60 | C15H10O6 | 285.19 | 241.16 (67), 217.25 (100) | −3.98 | [15] |
21 | Luteolin | 36.92 | C15H10O6 | 285.04 | 257.16 (40), 241.13 (100) | −4.58 | [2,20] |
22 | Ferulic acid | 38.09 | C10H10O4 | 193.00 | 177.00 (7), 149.00 (50), 145.00 (100), 117.00 (32), 89.00 (62) | −2.98 | [21] |
23 | Cinnamic acid derivative | 38.65 | - | 329.09 | 197.10 (50), 239.10 (35), 169.07 (100) | −0.58 | [2] |
24 | Catechin (+) | 39.67 | C15H14O6x H2O | 289.00 | 245.00 (50), 205.00 (100), 179.00 (20), 261.00 (42) | −0.37 | [15,19] |
25 | Epicatechin (−) | 39.67 | C15H14O6 | 289.00 | 245.00 (50), 205.00 (100), 179.00 (20), 261.00 (40) | −2.63 | [15,19] |
26 | Apigenin | 47.80 | C15H10O5 | 269.03 | 223.01 (50), 179.07 (100) | −3.04 | [2,20] |
27 | Orientin | 49.74 | C21H20O11 | 447.02 | 403.16 (100), 233.03 (50) | −1.61 | [2] |
Polyphenols | Part of Plant | |||
---|---|---|---|---|
Positive (+) or Negative (−) | ||||
Flower | Leaf | Stem | Root | |
HHDP-hexoside | + | + | + | + |
Catechin (+) | - | + | + | + |
Chlorogenic acid | + | + | - | - |
Corilagin | + | + | + | + |
Vanillic acid | + | + | + | + |
Caffeic acid | + | + | + | + |
Tannic acid | + | + | + | + |
Gallic acid | + | + | + | + |
Epicatechin (−) | - | + | + | + |
p-coumaric acid | + | + | + | + |
Naringenin | + | + | + | + |
Naringin | + | + | + | + |
Rutin | + | + | + | + |
Quercetin | + | + | + | - |
Kaempferol | + | - | + | - |
Quinic acid | + | + | + | + |
Ellagic acid | + | + | + | + |
Castalin | + | + | + | + |
Orientin | + | + | + | + |
Apigenin | + | - | + | + |
Luteolin | + | + | + | - |
Brevifolin | + | + | + | + |
Ferulic acid | + | - | + | + |
Ellagic acid-pentoside | + | + | - | - |
X1 | + | + | + | + |
Ellagic acid rhamnosyl | + | + | + | + |
Cinnamic acid derivative | + | + | - | - |
Elements | Part of Plant | |||
---|---|---|---|---|
mg/kg (Dry Weight) | ||||
Flower | Leaf | Stem | Root | |
Al | 646.7 ± 15.2 | 1075.8 ± 57.8 | 224.9 ± 12.1 | 7151.9 ± 57.9 |
As | <1.0 | <1.0 | <0.5 | <2.5 |
B | 36.3 ± 1.3 | 32.2 ± 1.1 | 23.1 ± 1.2 | <2.5 |
Ba | <2.5 | 13.5 ± 0.8 | 5.7 ± 1.0 | 55.1 ± 2.2 |
Ca | 3817.1 ± 69.8 | 8103.1 ± 58.9 | 729.0 ± 38.0 | 8621.9 ± 113.3 |
Cd | <0.1 | <0.1 | <0.1 | <0.1 |
Co | <1.0 | <1.0 | <1.0 | 2.0 ± 0.1 |
Cr | <1.0 | <2.5 | <1.0 | 14.5 ± 0.5 |
Cu | 6.3 ± 0.5 | 3.0 ± 0.3 | <1.0 | 10.2 ± 1.1 |
Fe | 149.2 ± 6.6 | 817.0 ± 4.0 | 24.5 ± 1.8 | 539.6 ± 20.5 |
Hg | <0.5 | <0.5 | <0.5 | <0.5 |
K | 10,724.9 ± 45.2 | 4931.3 ± 17.7 | 6876.6 ± 19.9 | 7453.4 ± 18.8 |
Li | <1.0 | <1.0 | <1.0 | 6.4 ± 0.5 |
Mg | 2857.2 ± 82.7 | 2057.3 ± 68.5 | 1954.1 ± 24.9 | 4084.1 ± 36.3 |
Mn | 69.2 ± 1.7 | 508.3 ± 14.6 | 345.8 ± 6.3 | 379.0 ± 6.9 |
Mo | <1.0 | <1.0 | <1.0 | <1.0 |
Na | 9745.8 ± 55.9 | 16,908.6 ± 580.2 | 36,712.4 ± 589.1 | 4692.3 ± 67.7 |
Ni | <1.0 | <2.5 | <1.0 | 7.5 ± 0.5 |
P | 5181.9 ± 57.2 | 2051.3 ± 34.3 | 1762.6 ± 14.7 | 3467.9 ± 23.8 |
Pb | <0.5 | <0.5 | <0.5 | 2.8 ± 0.3 |
Zn | 64.1 ± 2.4 | 16.1 ± 1.8 | 12.7 ± 1.0 | 44.8 ± 2.9 |
Se | <1.0 | <0.5 | <0.5 | <0.5 |
Sn | <2.5 | <2.5 | <2.5 | <2.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cudalbeanu, M.; Ghinea, I.O.; Furdui, B.; Dah-Nouvlessounon, D.; Raclea, R.; Costache, T.; Cucolea, I.E.; Urlan, F.; Dinica, R.M. Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules 2018, 23, 1247. https://doi.org/10.3390/molecules23061247
Cudalbeanu M, Ghinea IO, Furdui B, Dah-Nouvlessounon D, Raclea R, Costache T, Cucolea IE, Urlan F, Dinica RM. Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules. 2018; 23(6):1247. https://doi.org/10.3390/molecules23061247
Chicago/Turabian StyleCudalbeanu, Mihaela, Ioana Otilia Ghinea, Bianca Furdui, Durand Dah-Nouvlessounon, Robert Raclea, Teodor Costache, Iulia Elena Cucolea, Florentina Urlan, and Rodica Mihaela Dinica. 2018. "Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere" Molecules 23, no. 6: 1247. https://doi.org/10.3390/molecules23061247
APA StyleCudalbeanu, M., Ghinea, I. O., Furdui, B., Dah-Nouvlessounon, D., Raclea, R., Costache, T., Cucolea, I. E., Urlan, F., & Dinica, R. M. (2018). Exploring New Antioxidant and Mineral Compounds from Nymphaea alba Wild-Grown in Danube Delta Biosphere. Molecules, 23(6), 1247. https://doi.org/10.3390/molecules23061247