Synthesis of Carvone-Derived 1,2,3-Triazoles Study of Their Antioxidant Properties and Interaction with Bovine Serum Albumin
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. General Method for the Preparation of Terpenyl-1,2,3-triazoles 4a–i
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.A. Terpenoids. In The Chemistry of Natural Products. Chapman & Hall; Blackie Academic & Professional: New York, NY, USA, 1993. [Google Scholar]
- Zhang, L. Natural Products: Drug Discovery and Therapeutic Medicine; Humana Press: Totowa, NY, USA, 2005. [Google Scholar]
- Loza-Tavera, H. Monoterpenes in essential oils-biosynthesis and properties. Adv. Exp. Med. Biol. 1999, 464, 49–62. [Google Scholar] [PubMed]
- Little, D.B.; Croteau, R. Biochemistry of Essential Oil Plants: A Thirty-Year Overview. In Flavor Chemistry: Thirty Years of Progress; Kluwer Academic/Plenum: New York, NY, USA, 1999. [Google Scholar]
- Crowell, P.L. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 1999, 129, 775S–778S. [Google Scholar] [CrossRef] [PubMed]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 5, 322–332. [Google Scholar] [CrossRef]
- Fabian, C.J. Breast cancer chemoprevention: Beyond tamoxifen. Breast Cancer Res. 2001, 3, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, E.; Lin, F.Y. Terpene Biosynthesis: Modularity Rules. Angew. Chem. Int. Ed. 2012, 51, 1124–1137. [Google Scholar] [CrossRef] [PubMed]
- González-Burgos, E.; Gómez-Serranillos, M.P. Terpene Compounds in Nature: A Review of Their Potential Antioxidant Activity. Curr. Med. Chem. 2012, 19, 5319–5341. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, L.W.; Sparnins, V.L.; Barany, G. Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res. 1989, 49, 2689–2692. [Google Scholar] [PubMed]
- Crowell, P.L.; Kennan, W.S.; Vedejs, E.; Gould, M.N. Chemoprevention of limonene carcinogenesis by hydroxylated metabolites. In Proceedings of the 81st Annual Meeting of the American Association for Cancer Research, Washington, DC, USA, 23–26 May 1990. [Google Scholar]
- Mills, J.J.; Chari, R.S.; Boyer, I.J.; Gould, M.N.; Jirtle, R.L. Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res. 1995, 55, 979–983. [Google Scholar] [PubMed]
- Haag, J.D.; Gould, M.N. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chemother. Pharmacol. 1994, 34, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)—Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. J. Org. Chem. 2002, 67, 3057–3062. [Google Scholar] [CrossRef]
- Sokolova, N.; Nenajdenko, V.G. Recent Advances in the CuI-catalyzed Alkyne-Azide Cycloaddition (CuAAC): Focus on Functionally Substituted Azides and Alkynes. RSC Adv. 2013, 3, 16212–16242. [Google Scholar] [CrossRef]
- Sokolova, N.V.; Latyshev, G.V.; Lukashev, N.V.; Nenajdenko, V.G. Design and synthesis of bile acid-peptide conjugates linked via triazole moiety. Org. Biomol. Chem. 2011, 9, 4921–4926. [Google Scholar] [CrossRef] [PubMed]
- Nenajdenko, V.G.; Gulevich, A.V.; Sokolova, N.V.; Mironov, A.V.; Balenkova, E.S. Chiral Isocyanoazides: Efficient Bifunctional Reagents for Bioconjugation. Eur. J. Org. Chem. 2010, 1445–1449. [Google Scholar] [CrossRef]
- Vasilevsky, S.F.; Govdi, A.I.; Sorokina, I.V.; Tolstikova, T.G.; Baev, D.S.; Tolstikov, G.A.; Mamatuyk, V.I.; Alabugin, I.V. Rapid Access to New Bioconjugates of Betulonic Acid via Click Chemistry. Bioorg. Med. Chem. Lett. 2011, 21, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Vasilevsky, S.F.; Govdi, A.I.; Shults, E.E.; Shakirov, M.M.; Tolstikov, G.A.; Alabugin, I.V. Efficient Synthesis of the Betulonic Acid -Acetylene Hybrids and Their Hepatoprotective and Anti-Inflammatory Activity. Biorgan. Med. Chem. 2009, 17, 5164–5169. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.F.; da Rocha, D.R.; da Silva, F.C.; Ferreira, P.G.; Boechat, N.A.; Magalhães, J.L. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: A patent review (2008–2011). Expert Opin. Ther. Pat. 2013, 23, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.K.; Saha, D.; Jain, V.K.; Jain, B. Synthesis and antitubercular activity of some triazole derivatives of propyl gallate. Int. J. Pharm. Sci. Res. 2010, 1, 465–472. [Google Scholar]
- Tan, S.L.; Pause, A.; Shi, Y.; Sonenberg, N. Hepatitis C therapeutics: Current status and emerging strategies. Nat. Rev. Drug. Discov. 2002, 1, 867–881. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, P.; Sundaralingam, M. A New Class of Synthetic Nucleoside Analogues with Broad-spectrum Antiviral Properties. Nat. New Biol. 1973, 244, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, P.; Sundaralingam, M. The crystal and molecular structures of two polymorphic crystalline forms of virazole (1-β-d-ribo furanosyl-1,2,4-triazole-3-carboxamide). A new synthetic broad sprectrum antiviral agent. Acta Cryst. Sect. B 1976, 32, 419–426. [Google Scholar] [CrossRef]
- Kushwaha, K.; Kaushik, N.; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett. 2014, 24, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Weinges, K.; Schwarz, G. Radikalische Cyclisierung von Dienen, VI. Substratkontrollierte asymmetrische Synthese von (3aS,6aR)-(+)-3,3a,6,6a-Tetrahydro-2H-cyclopenta[b]furan-2-on. Liebigs Ann. Chem. 1993, 1993, 811–814. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Arudi, R.L.; Ross, A.B. Reactivity of HO2/O2− Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Ernestova, L.S.; Semenova, I.V.; Vlasova, G.V.; Lee Wolf, N. Redox transformation of pollutants in natural waters. In Hydrological, Chemical and Biological Processes of Transformation and Transport of Contaminants in Aquatic Environments; IAHS Publisher: New York, NY, USA, 1994; Volume 219, pp. 67–74. [Google Scholar]
- Simonsen, M.E.; Muff, J.; Bennedsen, L.R.; Kowalski, K.P.; Søgaard, E.G. Photocatalytic bleaching of p-nitrosodimethylaniline and a comparison to the performance of other AOP technologies. J. Photochem. Photobiol. A Chem. 2010, 216, 244–249. [Google Scholar] [CrossRef]
- Urquiza, N.M.; Naso, L.G.; Manca, S.G.; Lezama, L.; Rojo, T.; Williams, P.A.M.; Ferrer, E.G. Antioxidant activity of methimazole–copper (II) bioactive species and spectroscopic investigations on the mechanism of its interaction with Bovine Serum Albumin. Polyhedron 2012, 31, 530–538. [Google Scholar] [CrossRef]
- Li, Q.; Yang, W.; Wu, L.; Qi, H.Y.; Huang, Y.; Zhang, Z. Interaction of Warfarin with Human Serum Albumin and Effect of Ferulic Acid on the Binding. J. Spectrosc. 2014. [Google Scholar] [CrossRef]
- Manjunath, D.M.; Sharanappa, T.N.; Shrinivas, D.J.; Uttam, A.M.; Shivamurti, A.C. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. J. Pharm. Anal. 2015, 5, 249–255. [Google Scholar]
- Ross, D.P.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Kragh-Hansen, U. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 1990, 37, 57–84. [Google Scholar] [PubMed]
- Lakowicz, J. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
Sample Availability: Samples of all the compounds 4a–i are available from the authors. |
Entry | Solvent | Catalyst (mol%) | Time, h | Temp., °C | Isolated Yield a |
---|---|---|---|---|---|
1. | DMSO | CuBr(10) | 5 | 65 | 39 |
2. | DMSO | CuI(10) | 5 | 65 | 48 |
3. | MeCN: DMSO—1:1 | CuI(10) | 8 | 60 | 56 |
4. | MeCN | CuI (10) | 8 | 60 | 69 |
5. | MeCN | CuI (10) | 10 | 60 | 71 |
6. | MeCN | CuI (5) | 10 | 60 | 78 |
Terpenyl-1,2,3-triazoles | Yield, % | Terpenyl-1,2,3-triazoles | Yield, % | ||
---|---|---|---|---|---|
4a | 78 | 4f | 65 | ||
4b | 79 | 4g | 63 | ||
4c | 73 | 4h | 84 | ||
4d | 79 | 4i | 76 | ||
4e | 81 |
Tested Compound | Rate Constant HO• + 4a–e (M s−1) |
---|---|
4a | 1.155 × 109 |
4b | 4.483 × 109 |
4c | 1.359 × 109 |
4d | 0.104 × 109 |
4e | 0.407 × 109 |
Ascorbic acid (control) | 9.450 × 109 |
T, K | Kb, M−1 | N | ΔH, kJ mol−1 | ΔG, kJ mol−1 | ΔS, J mol−1 K−1 |
---|---|---|---|---|---|
298 | 2.40·× 103 | 1.001 ± 0.079 | 67.989 | −19.283 | 292.86 |
308 | 5.85·× 103 | 1.061 ± 0.066 | −22.212 |
T, K | I, cm3 L × mol−1 | E | R0, nm | r, nm |
---|---|---|---|---|
298 | 1.79 × 10−14 | 0.019 | 3.778 | 7.27 |
308 | 1.80 × 10−14 | 0.043 | 3.782 | 7.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galstyan, A.S.; Martiryan, A.I.; Grigoryan, K.R.; Ghazaryan, A.G.; Samvelyan, M.A.; Ghochikyan, T.V.; Nenajdenko, V.G. Synthesis of Carvone-Derived 1,2,3-Triazoles Study of Their Antioxidant Properties and Interaction with Bovine Serum Albumin. Molecules 2018, 23, 2991. https://doi.org/10.3390/molecules23112991
Galstyan AS, Martiryan AI, Grigoryan KR, Ghazaryan AG, Samvelyan MA, Ghochikyan TV, Nenajdenko VG. Synthesis of Carvone-Derived 1,2,3-Triazoles Study of Their Antioxidant Properties and Interaction with Bovine Serum Albumin. Molecules. 2018; 23(11):2991. https://doi.org/10.3390/molecules23112991
Chicago/Turabian StyleGalstyan, Armen S., Armen I. Martiryan, Karine R. Grigoryan, Armine G. Ghazaryan, Melanya A. Samvelyan, Tariel V. Ghochikyan, and Valentine G. Nenajdenko. 2018. "Synthesis of Carvone-Derived 1,2,3-Triazoles Study of Their Antioxidant Properties and Interaction with Bovine Serum Albumin" Molecules 23, no. 11: 2991. https://doi.org/10.3390/molecules23112991
APA StyleGalstyan, A. S., Martiryan, A. I., Grigoryan, K. R., Ghazaryan, A. G., Samvelyan, M. A., Ghochikyan, T. V., & Nenajdenko, V. G. (2018). Synthesis of Carvone-Derived 1,2,3-Triazoles Study of Their Antioxidant Properties and Interaction with Bovine Serum Albumin. Molecules, 23(11), 2991. https://doi.org/10.3390/molecules23112991