Next Article in Journal
A Perspective on Reversibility in Controlled Polymerization Systems: Recent Progress and New Opportunities
Previous Article in Journal
Analogues of Muraymycin Nucleoside Antibiotics with Epimeric Uridine-Derived Core Structures
Previous Article in Special Issue
Determination of Enantiomeric Excess by Solid-Phase Extraction Using a Chiral Metal-Organic Framework as Sorbent
Article Menu
Issue 11 (November) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(11), 2869; https://doi.org/10.3390/molecules23112869

Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants

1
Departament of Chemistry (Analytical Division), University of La Laguna, 38206 Tenerife, Spain
2
X-ray and Molecular Materials Lab (MATMOL), Physics Department, University of La Laguna, 38206 Tenerife, Spain
*
Authors to whom correspondence should be addressed.
Received: 11 October 2018 / Revised: 30 October 2018 / Accepted: 31 October 2018 / Published: 3 November 2018
(This article belongs to the Special Issue Solid Phase Extraction: State of the Art and Future Perspectives)
Full-Text   |   PDF [1955 KB, uploaded 3 November 2018]   |  

Abstract

Four metal-organic frameworks (MOFs), specifically UiO-66, UiO-66-NH2, UiO-66-NO2, and MIL-53(Al), were synthesized, characterized, and used as sorbents in a dispersive micro-solid phase extraction (D-µSPE) method for the determination of nine pollutants of different nature, including drugs, phenols, polycyclic aromatic hydrocarbons, and personal care products in environmental waters. The D-µSPE method, using these MOFs as sorbents and in combination with high-performance liquid chromatography (HPLC) and diode-array detection (DAD), was optimized. The optimization study pointed out to UiO-66-NO2 as the best MOF to use in the multi-component determination. Furthermore, the utilization of isoreticular MOFs based on UiO-66 with the same topology but different functional groups, and MIL-53(Al) to compare with, allowed us for the first time to evaluate the influence of such functionalization of the ligand with regards to the efficiency of the D-µSPE-HPLC-DAD method. Optimum conditions included: 20 mg of UiO-66-NO2 MOF in 20 mL of the aqueous sample, 3 min of agitation by vortex and 5 min of centrifugation, followed by the use of only 500 µL of acetonitrile as desorption solvent (once the MOF containing analytes was separated), 5 min of vortex and 5 min of centrifugation. The validation of the D-µSPE-HPLC-DAD method showed limits of detection down to 1.5 ng·L−1, average relative recoveries of 107% for a spiked level of 1.50 µg·L−1, and inter-day precision values with relative standard deviations lower than 14%, for the group of pollutants considered. View Full-Text
Keywords: metal-organic frameworks; dispersive solid-phase extraction; organic pollutants; analyte partitioning metal-organic frameworks; dispersive solid-phase extraction; organic pollutants; analyte partitioning
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Taima-Mancera, I.; Rocío-Bautista, P.; Pasán, J.; Ayala, J.H.; Ruiz-Pérez, C.; Afonso, A.M.; Lago, A.B.; Pino, V. Influence of Ligand Functionalization of UiO-66-Based Metal-Organic Frameworks When Used as Sorbents in Dispersive Solid-Phase Analytical Microextraction for Different Aqueous Organic Pollutants. Molecules 2018, 23, 2869.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top