Next Article in Journal
Effect of Vertical Shoot-Positioned, Scott-Henry, Geneva Double-Curtain, Arch-Cane, and Parral Training Systems on the Volatile Composition of Albariño Wines
Previous Article in Journal
Special Issue: Asymmetric Synthesis 2017
Open AccessArticle

Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica

1
Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
2
Department of Phytochemistry, Medicinal Plants and Drug Research Institute, Shahid Beheshti University, GC, Evin, Tehran 1983969411 , Iran
3
Division of Pharmaceutical Biology, University of Basel, Basel 4056, Switzerland
4
Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
*
Author to whom correspondence should be addressed.
Molecules 2017, 22(9), 1501; https://doi.org/10.3390/molecules22091501
Received: 20 August 2017 / Revised: 2 September 2017 / Accepted: 4 September 2017 / Published: 8 September 2017
(This article belongs to the Section Natural Products Chemistry)
Wound healing is a complex physiological process that is controlled by a well-orchestrated cascade of interdependent biochemical and cellular events, which has spurred the development of therapeutics that simultaneously target these active cellular constituents. We assessed the potential of Parrotia persica (Hamamelidaceae) in wound repair by analyzing the regenerative effects of its two main phenolic compounds, myricetin-3-O-β-rhamnoside and chlorogenic acid. To accomplish this, we performed phytochemical profiling and characterized the chemical structure of pure compounds isolated from P. persica, followed by an analysis of the biological effects of myricetin-3-O-β-rhamnoside and chlorogenic acid on three cell types, including keratinocytes, fibroblasts, and endothelial cells. Myricetin-3-O-β-rhamnoside and chlorogenic acid exhibited complementary pro-healing properties. The percentage of keratinocyte wound closure as measured by a scratch assay was four fold faster in the presence of 10 µg/mL chlorogenic acid, as compared to the negative control. On the other hand, myricetin-3-O-β-rhamnoside at 10 µg/mL was more effective in promoting fibroblast migration, demonstrating a two-fold higher rate of closure compared to the negative control group. Both compounds enhanced the capillary-like tube formation of endothelial cells in an in vitro angiogenesis assay. Our results altogether delineate the potential to synergistically accelerate the fibroblastic and remodelling phases of wound repair by administering appropriate amounts of myricetin-3-O-β-rhamnoside and chlorogenic acid. View Full-Text
Keywords: wound healing; angiogenesis; P. persica; myricetin-3-O-β-rhamnoside; chlorogenic acid wound healing; angiogenesis; P. persica; myricetin-3-O-β-rhamnoside; chlorogenic acid
Show Figures

Figure 1

MDPI and ACS Style

Moghadam, S.E.; Ebrahimi, S.N.; Salehi, P.; Moridi Farimani, M.; Hamburger, M.; Jabbarzadeh, E. Wound Healing Potential of Chlorogenic Acid and Myricetin-3-O-β-Rhamnoside Isolated from Parrotia persica. Molecules 2017, 22, 1501.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop