Next Article in Journal
The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153
Previous Article in Journal
Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(6), 890;

Structural Characterization of Lignin in Fruits and Stalks of Chinese Quince

Department of Oil Engineering, College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
Author to whom correspondence should be addressed.
Academic Editor: Thomas J. Schmidt
Received: 17 March 2017 / Revised: 23 May 2017 / Accepted: 23 May 2017 / Published: 27 May 2017
Full-Text   |   PDF [1298 KB, uploaded 27 May 2017]   |  


Chinese quince (Chaenomeles sinensis) is used in food and pharmaceutical products, but it is seldom eaten as a raw fruit due to its astringent, woody flesh. The structural characterization of lignin fractions from Chinese quince was very important to investigate the structure-activity relationships of lignin. In this investigation, to characterize the structure of lignin in Chinese quince fruits, the milled wood lignin sample was isolated from the fruits (FMWL) and the chemical structure of FMWL was investigated by sugar analysis, FT-IR, GPC, pyrolysis-GC/MS analysis, UV spectra analysis, thermogravimetric analysis (TGA), and advanced NMR spectroscopic techniques. In addition, the lignin fraction from the stalk of Chinese quince (SMWL) was also prepared for comparison to obtained more information of lignin structure in the fruits. The results showed that the two lignin fractions isolated from fruit and stalk of Chinese quince exhibited different structural features. The two MWL samples were mainly composed of β-O-4 ether bonds, β-5 and β-β′ carbon-carbon linkages in the lignin structural units. Compared to the SMWL, the FMWL fraction had the higher S/G ratio and more carbohydrates linkages. The predominant carbohydrates associated with FMWL and SMWL fractions were glucans-type hemicelluloses and xylan-type hemicelluloses, respectively. Understanding the structure of lignin could give insight into the properties of the lignin and enable the food processing industry to separate lignin more efficiently. View Full-Text
Keywords: Chinese quince; milled wood lignin; 31P-NMR; HSQC Chinese quince; milled wood lignin; 31P-NMR; HSQC

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Yin, H.-S.; Liu, H.-M.; Liu, Y.-L. Structural Characterization of Lignin in Fruits and Stalks of Chinese Quince. Molecules 2017, 22, 890.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top