Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profiling of C. kanran Extracts
2.2. Preparation of a Series of Deep Eutectic Solvents
2.3. Selection of Deep Eutectic Solvents with High Extraction Efficiency
2.4. Effects of Variables on the Extraction Efficiency for Flavone C-Glycosides
2.5. Optimization of the Extraction Conditions
3. Materials and Methods
3.1. Chemicals, Reagents, and Equipment
3.2. Preparation of Analytical Standard Solutions and Deep Eutectic Solvents
3.3. Ultra-High Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Analysis of C. kanran Extracts
3.4. Liquid Chromatography-Photodiode Array Detection Analysis of C. kanran Extracts
3.5. Extraction of Flavone C-Glycosides from C. kanran
3.6. Experimental Design and Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hossain, M.M. Therapeutic orchids: Traditional uses and recent advances—An overview. Fitoterapia 2011, 82, 102–140. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Kant, R.; Van, P.T.; Winarto, B.; Zeng, S.; Teixeira da Silva, J.A. The application of biotechnology to orchids. Crit. Rev. Plant Sci. 2013, 32, 69–139. [Google Scholar] [CrossRef]
- Gutierrez, R.M.P. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. J. Med. Plants Res. 2010, 4, 592–638. [Google Scholar]
- Teoh, E.S. Medicinal Orchids of Asia; Springer International Publishers: Basel, Switzerland, 2016. [Google Scholar]
- Williams, C.A. The leaf flavonoids of the Orchidaceae. Phytochemistry 1979, 18, 803–813. [Google Scholar] [CrossRef]
- Zeng, P.; Zhang, Y.; Pan, C.; Jia, Q.; Guo, F.; Li, Y.; Zhu, W.; Chen, K. Advances in studying of the pharmacological activities and structure–activity relationships of natural C-glycosylflavonoids. Acta Pharm. Sin. B 2013, 3, 154–162. [Google Scholar] [CrossRef]
- Xiong, L.; Cao, Z.-X.; Peng, C.; Li, X.-H.; Xie, X.-F.; Zhang, T.-M.; Zhou, Q.-M.; Yang, L.; Guo, L. Phenolic glucosides from Dendrobium aurantiacum var. Denneanum and their bioactivities. Molecules 2013, 18, 6153–6160. [Google Scholar] [PubMed]
- Tao, Y.; Cai, H.; Li, W.; Cai, B. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Anal. Bioanal. Chem. 2015, 407, 6081–6093. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Dai, J.-R.; Zhang, C.-G.; Lu, Y.; Wu, L.-L.; Gong, A.G.; Xu, H.; Tsim, K.W.; Wang, Z.-T. Chemical differentiation of Dendrobium officinale and Dendrobium devonianum by using HPLC fingerprints, HPLC-ESI-MS, and HPTLC analyses. J. Evid.-Based Complement. Altern. Med. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Nagaprashantha, L.D.; Vatsyayan, R.; Singhal, J.; Fast, S.; Roby, R.; Awasthi, S.; Singhal, S.S. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem. Pharmacol. 2011, 82, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Ku, S.K.; Jung, B.; Bae, J.S. Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm. Res. 2015, 64, 1005–1021. [Google Scholar] [CrossRef] [PubMed]
- Gobbo-Neto, L.; Santos, M.D.; Kanashiro, A.; Almeida, M.C.; Lucisano-Valim, Y.M.; Lopes, J.L.C.; Souza, G.E.P.; Lopes, N.P. Evaluation of the anti-inflammatory and antioxidant activities of di- C-glucosylflavones from Lychnophora ericoides (Asteraceae). Planta Med. 2005, 71, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Oshima, N.; Maruyama, T.; Yamashita, T.; Uchiyama, N.; Amakura, Y.; Hyuga, S.; Hyuga, M.; Nakamori, S.; Takemoto, H.; Kobayashi, Y.; et al. Two flavone C-glycosides as quality control markers for the manufacturing process of ephedrine alkaloids-free Ephedra Herb Extract (EFE) as a crude drug preparation. J. Nat. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Shie, J.J.; Chen, C.A.; Lin, C.C.; Ku, A.F.; Cheng, T.J.; Fang, J.M.; Wong, C.H. Regioselective synthesis of di- C-glycosylflavones possessing anti-inflammation activities. Org. Biomol. Chem. 2010, 8, 4451–4462. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Total synthesis of (+)-vicenin-2. Org. Lett. 2016, 18, 4488–4490. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.S.; Jain, D.; Singhal, P.; Awasthi, S.; Singhal, J.; Horne, D. Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; del Pilar Sánchez-Camargo, A.; Cifuentes, A.; Ibáñez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. TrAC Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef]
- Ruesgas-Ramón, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Shishov, A.; Bulatov, A.; Locatelli, M.; Carradori, S.; Andruch, V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J. 2017, 135, 33–38. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Namieśnik, J. Ionic liquids and deep eutectic mixtures: Sustainable solvents for extraction processes. ChemSusChem 2014, 7, 1784–1800. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Huang, W.; Xue, A.; Niu, H.; Jia, Z.; Wang, J. Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chem. 2009, 114, 1147–1154. [Google Scholar] [CrossRef]
- Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem. 2012, 19, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, T.; He, J.; Barba, F.J.; Cravotto, G.; Koubaa, M. Ultrasound-assisted extraction, centrifugation and ultrafiltration: Multistage process for polyphenol recovery from purple sweet potatoes. Molecules 2016, 21, 1584. [Google Scholar] [CrossRef] [PubMed]
- Zhua, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; Roohinejad, S.; Cravotto, G.; Yang, S.; Li, S.; He, J. HPLC-DAD-ESI-MS 2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chem. 2017, 215, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Soto, E.; Galanakis, C.M.; Brnčić, M.; Orlien, V.; Trujillo, F.J.; Mawson, R.; Knoerzer, K.; Tiwari, B.K.; Barba, F.J. Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Trends Food Sci. Technol. 2015, 42, 134–149. [Google Scholar] [CrossRef]
- De Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Brinkman, U.A. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Ruß, C.; König, B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 2012, 14, 2969–2982. [Google Scholar] [CrossRef]
- Jeong, K.M.; Ko, J.; Zhao, J.; Jin, Y.; Yoo, D.E.; Han, S.Y.; Lee, J. Multi-functioning deep eutectic solvents as extraction and storage media for bioactive natural products that are readily applicable to cosmetic products. J. Clean. Prod. 2017, 151, 87–95. [Google Scholar] [CrossRef]
- Jeong, K.M.; Zhao, J.; Jin, Y.; Heo, S.R.; Han, S.Y.; Yoo, D.E.; Lee, J. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media. Arch. Pharm. Res. 2015, 38, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhang, Q.; Liu, Q.; Tang, F.; Long, Y.; Yao, S. Ionic liquid surfactant-mediated ultrasonic-assisted extraction coupled to HPLC: Application to analysis of tanshinones in Salvia miltiorrhiza bunge. J. Sep. Sci. 2009, 32, 4220–4226. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
Sample Availability: Samples of C. kanran are available from J.K. |
No. a | Compound | λmax b | MW c | Molecular Formula | Theoretical | Measured | Mass Error d | |||
---|---|---|---|---|---|---|---|---|---|---|
[M + H]+ | [M − H]− | [M + H]+ | [M − H]− | [M + H]+ | [M − H]− | |||||
1 | Vicenin-2 | 334 | 594.1584 | C27H30O15 | 595.1663 | 593.1506 | 595.1655 | 593.1509 | −1.3 | 0.5 |
2 | Vicenin-2 isomer | 333 | 594.1584 | C27H30O15 | 595.1663 | 593.1506 | 595.1658 | 593.1501 | −0.8 | −0.8 |
3 | Schaftoside isomer | 335 | 564.1479 | C26H28O14 | 565.1557 | 563.1401 | 565.1546 | 563.1392 | −1.9 | −1.6 |
4 | Schaftoside | 336 | 564.1479 | C26H28O14 | 565.1557 | 563.1401 | 565.1542 | 563.1411 | −2.7 | 1.8 |
5 | Vicenin-3 | 334 | 564.1479 | C26H28O14 | 565.1557 | 563.1401 | 565.1541 | 563.1404 | −2.8 | 0.5 |
6 | Vitexin | 336 | 432.1056 | C21H20O10 | 433.1135 | 431.0978 | 433.1136 | 431.0976 | 0.2 | −0.5 |
7 | Isovitexin | 336 | 432.1056 | C21H20O10 | 433.1135 | 431.0978 | 433.1122 | 431.0981 | −3.0 | 0.7 |
Abbreviation | Hydrogen Bond Acceptor | Hydrogen Bond Donor | Molar Ratio |
---|---|---|---|
ChCl:Gly | Choline chloride | Glycerol | 1:4 |
ChCl:Xyl | Xylitol | 1:1 | |
ChCl:Sor | d-sorbitol | 1:1 | |
ChCl:Mal | Maltitol | 1:1 | |
ChCl:Eth | 1,2-Ethanediol | 1:4 | |
ChCl:Prop | 1,3-Propanediol | 1:4 | |
ChCl:But | 1,4-Butanediol | 1:4 | |
ChCl:Pent | 1,5-Pentanediol | 1:4 | |
ChCl:Hex | 1,6-Hexanediol | 1:4 | |
ChCl:DPG | Dipropylene glycol | 1:4 |
Extraction Solvent | Extracted Amount a (Mean ± SD, n = 3) | |||||||
---|---|---|---|---|---|---|---|---|
Vicenin-2 | Vicenin-2 Isomer | Schaftoside Isomer | Schaftoside | Vicenin-3 | Vitexin | Isovitexin | Summed Amount | |
Water | 0.940 (±0.002) | 0.115 (±0.002) | 0.157 (±0.007) | 0.174 (±0.007) | 0.072 (±0.002) | 0.023 (±0.002) | 0.005 (±0.000) | 1.486 ***, b (±0.016) |
100% Methanol | 0.623 (±0.022) | 0.090 (±0.003) | 0.156 (±0.004) | 0.150 (±0.002) | 0.066 (±0.001) | 0.048 (±0.001) | 0.025 (±0.000) | 1.158 *** (±0.034) |
70% Methanol | 1.130 (±0.006) | 0.158 (±0.006) | 0.262 (±0.007) | 0.258 (±0.012) | 0.107 (±0.001) | 0.057 (±0.001) | 0.029 (±0.000) | 2.001 *** (±0.017) |
70% Ethanol | 1.186 (±0.015) | 0.169 (±0.002) | 0.281 (±0.006) | 0.264 (±0.009) | 0.116 (±0.001) | 0.060 (±0.000) | 0.031 (±0.000) | 2.107 *** (±0.019) |
ChCl:Gly | 1.153 (±0.061) | 0.151 (±0.001) | 0.258 (±0.010) | 0.225 (±0.005) | 0.102 (±0.006) | 0.052 (±0.004) | 0.025 (±0.002) | 1.966 *** (±0.092) |
ChCl:Xyl | 0.964 (±0.031) | 0.127 (±0.005) | 0.208 (±0.003) | 0.192 (±0.004) | 0.082 (±0.002) | 0.041 (±0.001) | 0.019 (±0.000) | 1.633 *** (±0.040) |
ChCl:Sor | 0.859 (±0.033) | 0.111 (±0.010) | 0.178 (±0.012) | 0.164 (±0.015) | 0.073 (±0.004) | 0.035 (±0.002) | 0.015 (±0.000) | 1.435 *** (±0.075) |
ChCl:Mal | 0.774 (±0.062) | 0.093 (±0.004) | 0.162 (±0.008) | 0.144 (±0.018) | 0.063 (±0.004) | 0.031 (±0.001) | 0.014 (±0.000) | 1.281 *** (±0.085) |
ChCl:Eth | 1.210 (±0.068) | 0.161 (±0.006) | 0.244 (±0.002) | 0.219 (±0.002) | 0.110 (±0.006) | 0.057 (±0.003) | 0.027 (±0.000) | 2.028 *** (±0.086) |
ChCl:Prop | 1.275 (±0.121) | 0.175 (±0.017) | 0.288 (±0.027) | 0.272 (±0.034) | 0.120 (±0.010) | 0.065 (±0.005) | 0.032 (±0.003) | 2.227 *** (±0.220) |
ChCl:But | 1.324 (±0.104) | 0.184 (±0.012) | 0.298 (±0.025) | 0.283 (±0.029) | 0.128 (±0.011) | 0.069 (±0.006) | 0.034 (±0.003) | 2.320 *** (±0.194) |
ChCl:Pent | 1.460 (±0.058) | 0.193 (±0.002) | 0.328 (±0.001) | 0.296 (±0.021) | 0.141 (±0.006) | 0.076 (±0.002) | 0.040 (±0.002) | 2.534 ** (±0.049) |
ChCl:Hex | 1.533 (±0.009) | 0.197 (±0.013) | 0.339 (±0.006) | 0.325 (±0.005) | 0.151 (±0.002) | 0.079 (±0.001) | 0.040 (±0.000) | 2.664 (±0.004) |
ChCl:DPG | 1.652 (±0.052) | 0.233 (±0.003) | 0.370 (±0.021) | 0.347 (±0.026) | 0.162 (±0.005) | 0.087 (±0.003) | 0.045 (±0.000) | 2.896 (±0.108) |
Optimized conditions | 1.933 (±0.158) | 0.277 (±0.025) | 0.441 (±0.039) | 0.452 (±0.039) | 0.188 (±0.014) | 0.100 (±0.010) | 0.050 (±0.004) | 3.441 (±0.291) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, K.M.; Yang, M.; Jin, Y.; Kim, E.M.; Ko, J.; Lee, J. Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents. Molecules 2017, 22, 2006. https://doi.org/10.3390/molecules22112006
Jeong KM, Yang M, Jin Y, Kim EM, Ko J, Lee J. Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents. Molecules. 2017; 22(11):2006. https://doi.org/10.3390/molecules22112006
Chicago/Turabian StyleJeong, Kyung Min, Misuk Yang, Yan Jin, Eun Mi Kim, Jaeyoung Ko, and Jeongmi Lee. 2017. "Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents" Molecules 22, no. 11: 2006. https://doi.org/10.3390/molecules22112006
APA StyleJeong, K. M., Yang, M., Jin, Y., Kim, E. M., Ko, J., & Lee, J. (2017). Identification of Major Flavone C-Glycosides and Their Optimized Extraction from Cymbidium kanran Using Deep Eutectic Solvents. Molecules, 22(11), 2006. https://doi.org/10.3390/molecules22112006