Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fourier-Transform Infrared Characterization of CNC-β-CD
2.2. ACH Preparation
2.2.1. Effect of Neutralization Degree of Acrylic Acid on Hydrogel-Swelling
2.2.2. Effect of Reaction Temperature on Hydrogel Swelling
2.2.3. Effect of CCH Amount on Hydrogel Swelling
2.3. Effect of pH on ACH Swelling
2.4. Adsorption Characteristics of ACHs
2.4.1. Effect of Initial Methylene-Blue Concentration on Gel Adsorption
2.4.2. Effect of Temperature on Gel Adsorption
2.4.3. Comparative Experiments for Methylene-Blue Adsorption Properties
2.5. Adsorption Isotherms of Methylene Blue by ACH
2.6. Adsorption Kinetics of ACH
2.7. Release Characteristics of ACHs
3. Materials and Methods
3.1. Preparation of Citric Acid β-Cyclodextrin (CA-β-CD) Prepolymers
3.2. Infrared Characterization of CA-β-CD
3.3. Grafting CA-β-CD to CNC
3.4. Preparation of Composite CD Hydrogel (CCH)
3.5. Acrylated Composite Hydrogels (ACH) Preparation
3.6. Grafted Acrylic Acid with α-CD and Starch
3.7. Effect of pH on ACH Swelling Ratio
3.8. Determination of ACH Adsorption Properties
3.9. ACH Release Properties
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yuan, Y.; Zhang, L. Recent progress in the study of cyclodextrin-based environment sensitive hydrogel. Yao Xue Xue Bao 2010, 45, 960–965. [Google Scholar] [PubMed]
- Li, J.; Harada, A.; Kamachi, M. Sol–gel transition during inclusion complex formation between α-cyclodextrin and high molecular weight poly (ethylene glycol) s in aqueous solution. Polym. J. 1994, 26, 1019–1026. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Stoddart, J.F. Azobenzene-based light-responsive hydrogel system. Langmuir 2009, 25, 8442–8446. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Tabata, K.V.; Aoki, H.; Ito, S.; Noji, H.; et al. Photo Gel–Sol/Sol–Gel Transition and Its Patterning of a Supramolecular Hydrogel as Stimuli-Responsive Biomaterials. Chem.-A Eur. J. 2008, 14, 3977–3986. [Google Scholar] [CrossRef] [PubMed]
- Kretschmann, O.; Choi, S.W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Switchable Hydrogels Obtained by Supramolecular Cross-Linking of Adamantyl-Containing LCST Copolymers with Cyclodextrin Dimers. Angew. Chem. Int. Ed. 2006, 45, 4361–4365. [Google Scholar] [CrossRef] [PubMed]
- Van de Manakker, F.; van der Pot, M.; Vermonden, T.; van Nostrum, C.F.; Hennink, W.E. Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules 2008, 41, 1766–1773. [Google Scholar] [CrossRef]
- Van de Manakker, F.; Vermonden, T.; el Morabit, N.; van Nostrum, C.F.; Hennink, W.E. Rheological behavior of self-assembling PEG-β-cyclodextrin/PEG-cholesterol hydrogels. Langmuir 2008, 24, 12559–12567. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Ooya, T.; Huh, K.M.; Yui, N. pH-triggered changes in assembling properties of β-cyclodextrin-conjugated poly(ε-lysine) complexes. Biomacromolecules 2005, 6, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Weickenmeier, M.; Wenz, G.; Huff, J. Association thickener by host guest interaction of a β-cyclodextrin polymer and a polymer with hydrophobic side-groups. Macromol. Rapid Commun. 1997, 18, 1117–1123. [Google Scholar] [CrossRef]
- Daoud-Mahammed, S.; Grossiord, J.; Bergua, T.; Amiel, C.; Couvreur, P.; Gref, R. Self-assembling cyclodextrin based hydrogels for the sustained delivery of hydrophobic drugs. J. Biomed. Mater. Res. Part A 2008, 86, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Gref, R.; Amiel, C.; Molinard, K.; Daoud-Mahammed, S.; Sébille, B.; Gillet, B.; Beloeil, J.C.; Ringard, C.; Rosilio, V.; Poupaert, J.; et al. New self-assembled nanogels based on host–guest interactions: Characterization and drug loading. J. Control. Release 2006, 111, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, N.M.; Maitra, U. Supramolecular gels: Functions and uses. Chem. Soc. Rev. 2005, 34, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes. Macromolecules 2007, 40, 3402–3407. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, L.-M. Fabrication and modulation of magnetically supramolecular hydrogels. J. Phys. Chem. B 2008, 112, 6315–6321. [Google Scholar] [CrossRef] [PubMed]
- Martel, B.; Weltrowski, M.; Ruffin, D.; Morcellet, M. Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: Study of the process parameters. J. Appl. Polym. Sci. 2002, 83, 1449–1456. [Google Scholar] [CrossRef]
- Lanthong, P.; Nuisin, R.; Kiatkamjornwong, S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr. Polym. 2006, 66, 229–245. [Google Scholar] [CrossRef]
- Athawale, V.; Lele, V. Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr. Polym. 1998, 35, 21–27. [Google Scholar] [CrossRef]
- Chen, J.; Rong, L.; Lin, H.; Xiao, R.; Wu, H. Radiation synthesis of pH-sensitive hydrogels from β-cyclodextrin-grafted PEG and acrylic acid for drug delivery. Mater. Chem. Phys. 2009, 116, 148–152. [Google Scholar] [CrossRef]
- Ahmed, M.J. Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. J. Environ. Chem. Eng. 2016, 4, 89–99. [Google Scholar] [CrossRef]
- Hiraku, Y.; Goto, H.; Kohno, M.; Kawanishi, S.; Murata, M. Metal-mediated oxidative DNA damage induced by methylene blue. Biochim. Biophys. Acta (BBA)-Gener. Subj. 2014, 1840, 2776–2782. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Darracq, M.A.; Clark, R.F. A review of methylene blue treatment for cardiovascular collapse. J. Emerg. Med. 2014, 46, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A useful adsorption isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Shuchuan, P.; Shisheng, W.; Tianhu, C.; Shaotong, J.; Chuanhui, H. Adsorption kinetics of methylene blue from aqueous solutions onto palygorskite. Acta Geol. Sin. (Engl. Ed.) 2006, 80, 236–242. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, S.; Xu, X. Dual stimuli responsive poly (N-isopropylacrylamide-co-acrylic acid) hydrogels based on a β-cyclodextrin crosslinker: Synthesis, properties, and controlled protein release. J. Polym. Res. 2012, 19, 9988. [Google Scholar] [CrossRef]
- Si, H.; Li, B.; Wang, T.; Lin, L.; Xu, Z. Preparation of cyclodextrin grafting wood flour and investigation of the release characteristics of eugenol. Wood Sci. Technol. 2013, 47, 601–613. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Equation | Equation | Saturated Adsorption Capacity Qmax (mg/g) | Adsorption Coefficient KL | R2 |
---|---|---|---|---|
Langmuir | Ce/Qe = 0.0061Ce + 0.0068 | 163.93 | 0.897 | 0.9542 |
Freundlich | logQe = 0.4708logCe + 1.7529 | 56.61 | 2.124 | 0.997 |
Equation | Equation | Balance Concentration (mg/L) | R2 |
---|---|---|---|
Quasi—first order kinetics equation | y = −0.1433x + 5.4833 | 240.64 | 0.9629 |
Quasi—second order kinetics equation | y = 0.0048x + 0.0227 | 208.33 | 0.9935 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Meng, X.; Yuan, Z.; Tian, Y.; Bai, Y.; Jin, Z. Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules 2017, 22, 1824. https://doi.org/10.3390/molecules22111824
Wang J, Meng X, Yuan Z, Tian Y, Bai Y, Jin Z. Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules. 2017; 22(11):1824. https://doi.org/10.3390/molecules22111824
Chicago/Turabian StyleWang, Jinpeng, Xiaobing Meng, Zheng Yuan, Yaoqi Tian, Yuxiang Bai, and Zhengyu Jin. 2017. "Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue" Molecules 22, no. 11: 1824. https://doi.org/10.3390/molecules22111824
APA StyleWang, J., Meng, X., Yuan, Z., Tian, Y., Bai, Y., & Jin, Z. (2017). Acrylated Composite Hydrogel Preparation and Adsorption Kinetics of Methylene Blue. Molecules, 22(11), 1824. https://doi.org/10.3390/molecules22111824