Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of ITP–CZE–UV Method
2.2. Evaluation of Performance Parameters of ITP–CZE–UV Method
2.3. Method Application
3. Materials and Methods
3.1. Instrumentation
3.2. Chemicals and Samples
3.3. Procedures for Sample and Standard Solution Preparation
3.3.1. Standard Solutions, Calibration Solutions, and Quality Control (QC) Samples
3.3.2. Urine Sample Preparation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gershon, M.D.; Tack, J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterology 2007, 132, 397–414. [Google Scholar] [CrossRef]
- Gershon, M.D. 5-Hydroxytryptamine (serotonin) in gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Shajib, M.S.; Khan, W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiologica 2015, 213, 561–574. [Google Scholar] [CrossRef]
- Kema, I.P.; de Vries, E.G.E.; Muskiet, F.A.J. Clinical chemistry of serotonin and metabolites. J. Chromatogr. B 2000, 747, 33–48. [Google Scholar] [CrossRef]
- Harstad, R.K.; Johnson, A.C.; Weisenberg, M.M.; Bowser, M.T. Capillary electrophoresis. Anal. Chem. 2016, 88, 299–319. [Google Scholar] [CrossRef]
- Mikus, P.; Marakova, K. Hyphenated Electrophoretic Techniques in Advanced Analysis, 1st ed.; Kartprint: Bratislava, Slovakia, 2012. [Google Scholar]
- Kler, P.A.; Sydes, D.; Huhn, C. Column-coupling strategies for multidimensional electrophoretic separation techniques. Anal. Bioanal. Chem. 2015, 407, 119–138. [Google Scholar] [CrossRef]
- Kohl, F.J.; Sánchez-Hernández, L.; Neusüß, C. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications. Electrophoresis 2015, 36, 144–158. [Google Scholar] [CrossRef]
- Grochocki, W.; Markuszewski, M.J.; Quirino, J.P. Multidimensional capillary electrophoresis. Electrophoresis 2015, 36, 135–143. [Google Scholar] [CrossRef]
- Cottet, H.; Biron, J.P. Charge- and size-based separations of polyelectrolytes by heart-cutting two-dimensional capillary electrophoresis. Macromol. Chem. Phys. 2005, 206, 628–634. [Google Scholar] [CrossRef]
- Dickerson, J.A.; Ramsay, L.M.; Dada, O.O.; Cermak, N.; Dovichi, N.J. Two-dimensional capillary electrophoresis: Capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis 2010, 31, 2650–2654. [Google Scholar] [CrossRef] [PubMed]
- Kohl, F.J.; Montealegre, C.; Neusüß, C. On-line two dimensional capillary electrophoresis with mass spectrometric detection using a fully electric isolated mechanical valve. Electrophoresis 2016, 36, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, S.; Jooß, K.; Ressel, C.; Neusüß, C. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS. Anal. Bioanal. Chem. 2016, 408, 8701–8712. [Google Scholar] [CrossRef] [PubMed]
- Kukusamude, C.; Srijaranai, S.; Quirino, J.P. Stacking and separation of neutral and cationic analytes in interface-free two-dimensional heart-cutting capillary electrophoresis. Anal. Chem. 2014, 86, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Sydes, D.; Kler, P.A.; Hermans, M.; Huhn, C. Zero-dead-volume interfaces for two–dimensional electrophoretic separations. Electrophoresis 2016, 37, 3020–3024. [Google Scholar] [CrossRef] [PubMed]
- Mikuš, P.; Maráková, K. Column coupling electrophoresis in biomedical analysis. In Biomedical Engineering—From Therapy to Applications, 1st ed.; Fazel, R., Ed.; InTech: Rijeka, Croatia, 2011; pp. 81–130. [Google Scholar]
- Kaniansky, D.; Marák, J. On-line coupling of capillary isotachophoresis with capillary zone electrophoresis. J. Chromatogr. 1990, 498, 191–204. [Google Scholar] [CrossRef]
- Mikus, P.; Koval, M.; Marakova, K.; Piestansky, J.; Havranek, E. Separation possibilities of three-dimensional capillary electrophoresis. Talanta 2013, 103, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Claude, B.; Nehmé, R.; Morin, P. Analysis of urinary neurotransmitters by capillary electrophoresis: Sensitivity enhancement using field-amplified sample injection and molecular imprinted polymer solid phase extraction. Analytica Chimica Acta 2011, 699, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-D.; Tseng, W.-L.; Cheng, T.-L. Ultrasensitive detection of indoleamines by combination of nanoparticle-based extraction with capillary electrophoresis/laser-induced native fluorescence. J. Chromatogr. A 2009, 1216, 6451–6458. [Google Scholar] [CrossRef] [PubMed]
- Bacaloni, A.; Insogna, S.; Sanci, A.; Ciarrocca, M.; Sinibaldi, F. Sensitive profiling of biogenic amines in human urine by capillary electrophoresis with field amplified sample injection. Biomed. Chromatogr. 2013, 27, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Kartsova, L.A.; Sidorova, A.A.; Ivanova, A.S. Electrophoretic determination of biogenic amines in biological fluids. J. Anal. Chem. 2007, 62, 960–964. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chiang, C.-K.; Lin, Y.-W.; Liu, K.; Hu, C.-C.; Bair, M.-J.; Chang, H.-T. Capillary electrophoretic separation of biologically activite amines and acids using nanoparticle-coated capillaries. Electrophoresis 2008, 29, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, Z.; Yan, X. Simultaneous determination of serotonin and creatinine in urine by combining two ultrasound-assisted emulsification microextractions with on-column stacking in capillary electrophoresis. J. Sep. Sci. 2012, 35, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Ge, S.; Gao, F.; Wang, G.; Wang, Q.; He, P.; Fang, Y. On-line sample preconcentration technique based on a dynamic pH junction in CE-amperometric detection for the analysis of biogenic amines in urine. Electrophoresis 2013, 34, 2041–2048. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.-W. Determination of catecholamines and serotonin by micellar electrokinetic chromatography with laser-induced fluorescence detection. Biomed. Chromatogr. 2007, 21, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Okada, J.; Timerbaev, A. R.; Hirokawa, T. Sensitive profiling of biogenic amines in urine using CE with transient isotachophoretic preconcentration. J. Sep. Sci. 2009, 32, 4143–4147. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, W.; Li, J.; Li, L. Determination of 5-hydroxytryptamine in serum by electrochemiluminiscence detection with the aid of capillary electrophoresis. Luminiscence 2012, 27, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Sotgia, S.; Deiana, L.; Carru, C. Reverse injection capillary electrophoresis UV detection for serotonin quantification in human whole blood. J. Chromatogr. B 2012, 895, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Dailey, C.A.; Garnier, N.; Rubakhin, S.S.; Sweedler, J.V. Automated method for analysis of tryptophan and tyrosine metabolites using capillary electrophoresis with native fluorescence detection. Anal. Bioanal. Chem. 2013, 405, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, Y.; Gu, H.; Zhou, T.; Wang, L.; Mei, B.; Shi, G. Simultaneous determination of monoamines in rat brain with Pt/MWCNTs@Pdop hybrid nanocomposite using capillary electrophoresis–amperometric detection. Electrophoresis 2013, 34, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.-D.; Tian, S.-L.; Xu, H.-X.; Sung, J. J. Y.; Bian, Z.-X. Quantification of luminally released serotonin in rat proximal colon by capillary electrophoresis with laser-induced fluorescence detection. Anal. Bioanal. Chem. 2009, 393, 2059–2066. [Google Scholar] [CrossRef] [PubMed]
- Lapainis, T.; Scanlan, C.; Rubakhin, S.S.; Sweedler, J.V. A multichannel native fluorescence detection system for capillary electrophoretic analysis of neurotransmitters in single neurons. Anal. Bioanal. Chem. 2007, 387, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lapainis, T.; Rubakhin, S.S.; Sweedler, J.V. Capillary electrophoresis with electrospray ionization mass spectrometric detection for single cell metabolomics. Anal. Chem. 2009, 81, 5858–5864. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.J.V.; Martín, A.; Silva, M.F.; Escarpa, A. Microchip electrophoresis-single wall carbon nanotube press-transferred electrodes for fast and reliable electrochemical sensing of melatonin and its precursors. Electrophoresis 2015, 36, 1880–1885. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.G.; Aguiar, F.P.C.; de Jesus, D.P. A rapid and simple method for determination of 5-hydroxytryptophan in dietary supplements by capillary electrophoresis. J. Braz. Chem. Soc. 2014, 25, 783–787. [Google Scholar] [CrossRef]
- Piestansky, J.; Marakova, K.; Galba, J.; Mikus, P.; Kovac, A. Comparison of hydrodynamically closed two-dimensional capillary electrophoresis coupled with ultraviolet detection and hydrodynamically open capillary electrophoresis hyphenated with mass spectrometry in the bioanalysis of varenicline. J. Sep. Sci. 2017, 40, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Wuethrich, A.; Li, F.; Phung, S.C.; Kalsoom, U.; Cabot, J.M.; Tehranirokh, M.; Shallan, A.I.; Keyon, A.S.A.; See, H.H.; et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 2017, 38, 33–59. [Google Scholar] [CrossRef] [PubMed]
- Slampova, A.; Mala, Z.; Gebauer, P.; Bocek, P. Recent progress of sample stacking in capillary electrophoresis (2014–2016). Electrophoresis 2017, 38, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Mikus, P.; Kaniansky, D.; Sebesta, R.; Salisova, M. Cyclodextrins and their complexes: Structure and interactions. Chemicke Listy 2002, 96, 693–697. [Google Scholar]
- Zhu, Q.; Scriba, G.K.E. Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016, 79, 1403–1435. [Google Scholar] [CrossRef]
- Department of Health and Human Services Food and Drug Administration, Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM). Guidance for Industry, Bioanalytical Method Validation; FDA: Rockville, MD, USA, 2013. [Google Scholar]
Sample Availability: Not available. |
Performance Parameter | Water | Urine |
---|---|---|
Slope a | 32.94 | 34.79 |
SDa | 0.6125 | 0.5553 |
Interface b | 3.184 | 66.016 |
SDb | 0.2636 | 2.4500 |
r2 | 0.9942 | 0.9957 |
Linear range (ng·mL−1) | 2.07–82.86 | 4.14–82.86 |
LOD (ng·mL−1) | 1.24 | 2.32 |
LLOQ (ng·mL−1) | 2.07 | 4.14 |
N | 40,565 | 29,898 |
Migration time tm (min) | 27.36 | 28.73 |
RSDtm (%) | 0.03–0.57 | 0.02–1.17 |
RSDarea (%) | 1.04–4.34 | 5.25–7.88 |
Parameter | Within-Run, n = 5 | Between-Run, n = 10 | ||||
---|---|---|---|---|---|---|
Low | Medium | High | Low | Medium | High | |
Nominal concentration (ng·mL−1) | 4.14 | 24.86 | 66.28 | 4.14 | 24.86 | 66.28 |
Mean found concentration (ng·mL−1) | 4.60 | 23.68 | 62.19 | 4.62 | 23.01 | 59.98 |
RE (% Nom.) | 111.15 | 95.25 | 93.83 | 111.53 | 92.56 | 90.49 |
RSD (%) | 10.05 | 2.62 | 6.37 | 12.46 | 5.69 | 7.99 |
Nominal Concentration (ng·mL−1) | Freeze-Thaw Stability (3 Cycles) | Room Temperature Stability (24 h) | Recovery (%) | |||
---|---|---|---|---|---|---|
Concentration Found (ng·mL−1) | Accuracy (%RE) | Concentration Found (ng·mL−1) | Accuracy (%RE) | |||
Low | 4.14 | 4.46 | 7.73 | 4.27 | 3.14 | 90.00 |
Medium | 24.86 | 25.85 | 3.99 | 23.79 | −4.30 | 93.05 |
High | 66.28 | 65.77 | −0.76 | 60.75 | −8.34 | 93.57 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piešťanský, J.; Maráková, K.; Mikuš, P. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules 2017, 22, 1668. https://doi.org/10.3390/molecules22101668
Piešťanský J, Maráková K, Mikuš P. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules. 2017; 22(10):1668. https://doi.org/10.3390/molecules22101668
Chicago/Turabian StylePiešťanský, Juraj, Katarína Maráková, and Peter Mikuš. 2017. "Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine" Molecules 22, no. 10: 1668. https://doi.org/10.3390/molecules22101668
APA StylePiešťanský, J., Maráková, K., & Mikuš, P. (2017). Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules, 22(10), 1668. https://doi.org/10.3390/molecules22101668