Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General Information
3.2. Preparation of Substrates
3.3. General Procedure for the Reaction of (o-Alkynyl Phenyl) (Methoxymethyl) Sulfides 1
Preparation of bis(6-hydroxy-2-phenylbenzo[b]thiophen-3-yl)methanone, 2p
3.4. Agonistic Activity of 2p and 2l
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vlaar, T.; Ruijter, E.; Orru, R.V.A. Recent Advances in Palladium-Catalyzed Cascade Cyclizations. Adv. Synth. Catal. 2011, 353, 809–841. [Google Scholar] [CrossRef]
- Brennführer, A.; Neumann, H.; Beller, M. Palladium-Catalyzed Carbonylation Reactions of Alkenes and Alkynes. ChemCatChem 2009, 1, 28–41. [Google Scholar] [CrossRef]
- Wu, X.-F. Acylation of (Hetero) Arenes throuth C-H Activation with Aroyl Surrogates. Chem. Eur. J. 2015, 21, 12252–12265. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-Catalyzed Oxidative Carbonylation Reactions. ChemSusChem 2013, 6, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Kusakabe, T.; Takahashi, K.; Kato, K. A cyclization-carbonylation-cyclization coupling reaction of (ortho-alkynyl phenyl) (methoxymethyl) sulfides with the palladium(II)-bisoxazoline catalyst. Org. Biomol. Chem. 2014, 12, 3380–3385. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Arends, I.W.C.E.; ten Brink, G.-J.; Dijksman, A. Green, Catalytic Oxidations of Alcohols. Acc. Chem. Res. 2002, 35, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Bäckvall, J.-E.; Hopkins, R.B.; Grennberg, H.; Mader, M.; Awasthi, A.K. Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle quinone system. J. Am. Chem. Soc. 1990, 112, 5160–5166. [Google Scholar] [CrossRef]
- Wöltinger, J.; Bäckvall, J.-E.; Zsigmond, Á. Zeolite-Encapsulated Cobalt Salophen Complexes as Efficient Oxygen-Activating Catalysts in Palladium-Catalyzed Aerobic 1,4-Oxidation of 1,3-Dienes. Chem. Eur. J. 1999, 5, 1460–1467. [Google Scholar] [CrossRef]
- Bäckval, J.-E.; Awasthi, A.K.; Renko, Z.D. Biomimetic aerobic 1,4-oxidation of 1,3-dienes catalyzed by cobalt tetraphenylporphyrin-hydroquinone-palladium(II). An example of triple catalysis. J. Am. Chem. Soc. 1987, 109, 4750–4752. [Google Scholar] [CrossRef]
- Grennberg, H.; Faizon, S.; Bäckvall, J.-E. Cobalt Tetra(hydroquinone)porphyrin: An Efficient Electron Transfer Reagent in Aerobic Pd-Catalyzed 1,4-Diacetoxylation of 1,3-Cyclohexadiene. Angew. Chem. Int. Ed. 1993, 32, 263–264. [Google Scholar] [CrossRef]
- Verboom, R.C.; Slagt, V.F.; Bäckvall, J.-E. Fast and mild palladium(II)-catalyzed 1,4-oxidation of 1,3-dienes via activation of molecular oxygen with a designed cobalt(II) porphyrin. Chem. Commun. 2005, 10, 1282–1284. [Google Scholar] [CrossRef] [PubMed]
- Piera, J.; Bäckvall, J.-E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer—A Biomimetic Approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523. [Google Scholar] [CrossRef] [PubMed]
- Wendlandt, A.E.; Stahl, S.S. Quinone-Catalyzed Selective Oxidation of Organic Molecules. Angew. Chem. Int. Ed. 2015, 54, 14638–14658. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-Z.; Andreasson, U.; Bäckvall, J.-E. Aerobic oxidation of secondary alcohols via ruthenium-catalysed hydrogen transfer involving a new triple catalytic system. J. Chem. Soc. Chem. Commun. 1994, 9, 1037–1038. [Google Scholar] [CrossRef]
- Cho, C.-H.; Neuenswander, B.; Lushington, G.H.; Larock, R.C. Solution-Phase Parallel Synthesis of a Multi-substituted Benzo[b]thiophene Library. J. Comb. Chem. 2009, 11, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.-H.; Neuenswander, B.; Larock, R.C. Diverse Methyl Sulfone-Containing Benzo[b]thiophene Library via Iodocyclization and Palladium-Catalyzed Coupling. J. Comb. Chem. 2010, 12, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Berrade, L.; Aisa, B.; Ramirez, M.J.; Galiano, S.; Guccione, S.; Moltzau, L.R.; Levy, F.O.; Nicoletti, F.; Battaglia, G.; Molinaro, G.; et al. Novel Benzo[b]thiophene Derivatives as New Potential Antidepressants with Rapid Onset of Action. J. Med. Chem. 2011, 54, 3086–3090. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.F.; Shao, H.Y.; Yang, Z.Y.; Xue, S.T.; Li, X.; Liu, Z.Y.; He, X.B.; Jiang, J.D.; Zhang, Y.Q.; Si, S.Y.; et al. Substituted Benzothiophene or Benzofuran Derivatives as a Novel Class of Bone Morphogenetic Protein-2 Up-Regulators: Synthesis, Structure-Activity Relationships, and Preventive Bone Loss Efficacies in Senescence Accelerated Mice (SAMP6) and Ovariectomized Rats. J. Med. Chem. 2010, 53, 1819–1829. [Google Scholar] [PubMed]
- Jarak, I.; Kralj, M.; Šuman, L.; Pavlović, G.; Dogan, J.; Piantanida, I.; Žinić, M.; Pavelić, K.; Karminski-Zamola, G. Novel Cyano- and N-Isopropylamidino-Substituted Derivatives of Benzo[b]thiophene-2-carboxanilides and Benzo[b]thieno[2,3-c]quinolones: Synthesis, Photochemical Synthesis, Crystal Structure Determination, and Antitumor Evaluation. 2. J. Med. Chem. 2005, 48, 2346–2360. [Google Scholar] [CrossRef] [PubMed]
- Hrib, N.J.; Jurcak, J.G.; Bregna, D.E.; Dunn, R.W.; Geyer, H.M.; Hartman, H.B.; Roehr, J.E.; Rogers, K.L.; Rush, D.K. 3[4-[1-(6-Fluorobenzo[b]thiophen-3-yl)-4-piperazinyl]butyl]-2,5,5-trimethyl-4-thiazolidinone: A new atypical antipsychotic agent for the treatment of schizophrenia. J. Med. Chem. 1992, 35, 2712–2715. [Google Scholar] [CrossRef] [PubMed]
- Boschelli, D.H.; Kramer, J.B.; Khatana, S.S.; Sorenson, R.J.; Connor, D.T.; Ferin, M.A.; Wright, C.D.; Lesch, M.E.; Imre, K. Inhibition of E-Selectin-, ICAM-1-, and VCAM-1-Mediated Cell Adhesion by Benzo[b]thiophene-, Benzofuran-, Indole-, and Naphthalene-2-carboxamides: Identification of PD 144795 as an Antiinflammatory Agent. J. Med. Chem. 1995, 38, 4597–4614. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.T.; Cetenko, W.A.; Mullican, M.D.; Sorenson, R.J.; Unangst, P.C.; Weikert, R.J.; Adolphson, R.L.; Kennedy, J.A.; Thueson, D.O. Novel benzothiophene-, benzofuran-, and naphthalenecarboxamidotetrazoles as potential antiallergy agents. J. Med. Chem. 1992, 35, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.-J.R.P.; Ferreira, I.C.F.R.; Gaetano, Y.D.; Kirsch, G.; Calhelha, R.C.; Estevinho, L.M. Synthesis and antimicrobial activity studies of ortho-chlorodiarylamines and heteroaromatic tetracyclic systems in the benzo[b]thiophene series. Bioorg. Med. Chem. 2006, 14, 6827–6831. [Google Scholar] [CrossRef] [PubMed]
- Pinney, K.G.; Bounds, A.D.; Dingeman, K.M.; Mocharla, V.P.; Pettit, G.R.; Bai, R.; Hamel, E. A new anti-tubulin agent containing the benzo[b]thiophene ring system. Bioorg. Med. Chem. Lett. 1999, 9, 1081–1086. [Google Scholar] [CrossRef]
- Ehrlich, M.; Carell, T. Total Syntheses and Biological Evaluation of 3-O-Methylfunicone and Its Derivatives Prepared by TMPZnCl·LiCl-Mediated Halogenation and Carbonylative Stille Cross-Coupling. Eur. J. Org. Chem. 2013, 2013, 77–83. [Google Scholar] [CrossRef]
- Grossmann, K.; Ehrhardt, T. On the mechanism of action and selectivity of the corn herbicide topramezone: A new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Manag. Sci. 2007, 63, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Neumann, H.; Brennführer, A.; Beller, M. A General Synthesis of Diarylketones by Means of a Three-Component Cross-Coupling of Aryl and Heteroaryl Bromides, Carbon Monoxide, and Boronic acids. Chem. Eur. J. 2008, 14, 3645–3652. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour, F.; Rashidi-Ranjbar, P.; Kashani, A.O. Easy-to-Execute Carbonylative Arylation of Aryl Halides using Molybdenum Hexacarbonyl: Efficient Synthesis of Unsymmetrical Diaryl Ketones. Eur. J. Org. Chem. 2011, 2011, 2128–2132. [Google Scholar] [CrossRef]
- Lo Fiego, M.J.; Silbestri, G.F.; Chopa, A.B.; Lockhart, M.T. Selective Synthetic Routes to Sterically Hindered Unsymmetrical Diaryl Ketones via Arylstannanes. J. Org. Chem. 2011, 76, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Nishimura, Y.; Gao, F.; Gotoh, K.; Nishihara, Y.; Takagi, K. Rh-Catalyzed Carbonylation of Arylzinc Compounds Yielding Symmetrical Diaryl Ketones by the Assistance of Oxidizing Agents. J. Org. Chem. 2011, 76, 1949–1952. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not Available.
Entry | Co-Oxidant | Conditions | Yield of 2 (%) | Yield of 3 (%) | Recovery (%) |
---|---|---|---|---|---|
1 | None | 15 °C ~rt, 72 h | 12 | 65 | trace |
2 | p-BQ (10 mol %) | 5 °C ~rt, 72 h | 48 | 19 | - |
3 | CuCl2 (5 mol %) | 5 °C, 24 h | 46 | 16 | 14 |
4 | FeCl3·6H2O (5 mol %) | 5 °C, 24 h | 7 | - | 87 |
5 | VO(acac)2 (5 mol %) | 5 °C, 24 h | 31 | 12 | 32 |
6 | p-BQ (10 mol %) CuCl2 (5 mol %) | 5 °C, 24 h | 87 | 8 | - |
7 | p-BQ (5 mol %) CuCl2 (5 mol %) | 5 °C, 24 h | 84 | 7 | - |
8 | p-BQ (5 mol %) CuCl2 (5 mol %) | 0 °C, 48 h | 88 | 5 | - |
9 | p-BQ (5 mol %) CuCl2 (5 mol %) | −5 °C, 48 h | 65 | trace | 20 |
Entry | R1 | R2 | R3 | Substrate | Conditions | Yield of 2 (%) |
---|---|---|---|---|---|---|
1 | Ph | H | H | 1a | 0 °C, 48 h | 2a: 88 |
2 | 4-MePh | H | H | 1b | −10 °C, 48 h | 2b: 84 |
3 | 4-MeOPh | H | H | 1c | −10 °C, 48 h | 2c: 93 |
4 | 4-CF3Ph | H | H | 1d | 0 °C, 48 h | 2d: 83 |
5 | 4-FPh | H | H | 1e | −10 °C, 48 h | 2e: 80 |
6 | 4-BrPh | H | H | 1f | −10 °C, 48 h | 2f: 82 |
7 | 4-ClPh | H | H | 1g | −10 °C, 48 h | 2g: 82 |
8 | 3-Thienyl | H | H | 1h | 0 °C, 48 h | 2h: 80 |
9 | Phenethyl | H | H | 1i | 0 °C, 48 h | 2i: 92 |
10 | Octyl | H | H | 1j | −10 °C, 48 h | 2j: 71 |
11 | Cyclopropyl | H | H | 1k | −10 °C, 48 h | 2k: 90 |
12 | (CH2)9OH | H | H | 1l | −10 °C, 48 h | 2l: 84 |
13 | Ph | Cl | H | 1m | −10 °C, 72 h | 2m: 80 |
14 | Ph | Me | H | 1n | −10 °C, 48 h | 2n: 96 |
15 | Ph | H | OMe | 1o | −10 °C, 48 h | 2o: 82 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, R.; Kusakabe, T.; Yatsu, T.; Kanno, Y.; Takahashi, K.; Nemoto, K.; Kato, K. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant. Molecules 2016, 21, 1177. https://doi.org/10.3390/molecules21091177
Shen R, Kusakabe T, Yatsu T, Kanno Y, Takahashi K, Nemoto K, Kato K. Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant. Molecules. 2016; 21(9):1177. https://doi.org/10.3390/molecules21091177
Chicago/Turabian StyleShen, Rong, Taichi Kusakabe, Tomofumi Yatsu, Yuichiro Kanno, Keisuke Takahashi, Kiyomitsu Nemoto, and Keisuke Kato. 2016. "Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant" Molecules 21, no. 9: 1177. https://doi.org/10.3390/molecules21091177
APA StyleShen, R., Kusakabe, T., Yatsu, T., Kanno, Y., Takahashi, K., Nemoto, K., & Kato, K. (2016). Palladium(II) Catalyzed Cyclization-Carbonylation-Cyclization Coupling Reaction of (ortho-Alkynyl Phenyl) (Methoxymethyl) Sulfides Using Molecular Oxygen as the Terminal Oxidant. Molecules, 21(9), 1177. https://doi.org/10.3390/molecules21091177