The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Evaluation of Phytotoxicity of Aminophosphonates 2a–h
3. Materials and Methods
3.1. Chemistry
General Procedures of Preparaing Amino(2-thienyl)methylphosphonates 2a–h
3.2. Plant Growth Test of New Synthesized Compounds
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Andersen, S.M.; Hertz, P.B.; Holst, T.; Bossi, R.; Jacobsen, C.S. Mineralisation studies of C14-labelled metsulfuron-methyl, tribenuron-methyl, chlorsulfuron and thifensulfuronmethyl in one Danish soil and groundwater sediment profile. Chemosphere 2001, 45, 775–782. [Google Scholar] [CrossRef]
- Polati, S.; Bottaro, M.; Frascarolo, P.; Gosetti, F.; Gianotti, V.; Gennaro, M.C. HPLC-UV and HPLC-MSn multiresidue determination of amidosulfuron, azimsulfuron, nicosulfuron, rimsulfuron, thifensulfuron methyl, tribenuron methyl and azoxystrobin in surface waters. Anal. Chim. Acta 2006, 579, 146–151. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance thifensulfuron-methyl. EFSA J. 2015, 13, 4201. [Google Scholar] [CrossRef]
- Rosenkrantz, R.Y.; Baun, A.; Kusk, O. Growth inhibition and recoveryof Lemna gibba after pulse exposure to sulfonylurea herbicides. Ecotoxicol. Environ. Saf. 2013, 89, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Tardif, F.J. Herbicide cross resistance in weeds. Crop Prot. 2012, 35, 15–28. [Google Scholar] [CrossRef]
- Brown, D. 2,4-D and Dicamba-Resistant Crops and Their Implications for Susceptible Non-Target Crops; Michigan State University Extension: East Lansing, MI, USA, 2013. [Google Scholar]
- Filipe, O.M.S.; Santos, S.A.O.; Domingues, M.R.M.; Vidal, M.M.; Silvestre, A.J.D.; Neto, C.P.; Santos, E.B.H. Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC-MS/MS. Chemosphere 2013, 91, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Sanchirico, R.; Pinto, G.; Pollio, A.; Cordella, M.; Cozzani, V. Thermal degradation of Fenitrothion: Identification and eco-toxicity of decomposition products. J. Hazard. Mater. 2012, 199, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Baghestani, M.A.; Zand, E.; Soufizadeh, S.; Jamali, M.; Mighany, F. Evaluation of sulfosulfuron for broadleaved and grass weed control in wheat (Triticum aestivum L.) in Iran. Crop Prot. 2007, 26, 1385–1389. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, L.; Li, D.; Li, X.; Wang, C.; Zheng, M.; Pan, C.; Qiu, L. Biodegradation of thifensulfuron-methyl by Ochrobactrum sp. in liquid medium and soil. Biotechnol. Lett. 2015, 37, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Cessna, A.J.; Donald, D.B.; Bailey, J.; Waiser, M. Persistence of the Sulfonylurea Herbicides Sulfosulfuron, Rimsulfuron, and Nicosulfuron in Farm Dugouts (Ponds). J. Environ. Qual. 2015, 44, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.A.; Cessna, A.J. Variability in the distribution and dissipation of the herbicide thifensulfuron-methyl in a prairie wetland. J. Soil Water Conserv. 2014, 69, 151–159. [Google Scholar] [CrossRef]
- Aziz, S.; Dumas, S.; el Azzouzi, M.; Sarakham, M.; Chovelon, J.-M. Photophysical and photochemical studies of thifensulfuron-methyl herbicide in aqueous solution. J. Photochem. Photobiol. A Chem. 2010, 209, 210–218. [Google Scholar] [CrossRef]
- Lazartigues, A.; Thomas, M.; Banas, D.; Brun-Bellut, J.; Cren-Olivé, C.; Feidt, C. Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere 2013, 91, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.M.; Joshi, M.M.; van Ailien, T.; Carski, T.H.; Dulka, J.J.; Patrick, M.C.; Reiser, R.W.; Livingston, R.S.; Doughty, J. Degradation of thifensulfuron methyl in soil: Role of microbial carboxyesterase activity. J. Agric. Food Chem. 1997, 45, 955–961. [Google Scholar] [CrossRef]
- Boduszek, B. Synthesis and Biological Activity of Heterocyclic Amino-phosphonates. Phosphorus Sulfur Silicon Relat. Elem. 1999, 144, 433–436. [Google Scholar] [CrossRef]
- Janardhan Rao, A.; Visweswara Rao, P.; Koteswara Rao, V.; Mohan, C.; Naga Raju, C.; Suresh Reddy, C. Microwave Assisted One-pot Synthesis of Novel α-Amino-phosphonates and Their Biological Activity. Bull. Korean Chem. Soc. 2010, 31, 1863–1868. [Google Scholar]
- Maheswara Rao, K.U.; Namkoong, S.; Yu, H.-C.; Park, J.; Chung, C.-M.; Oh, S.Y. Green Synthesis and Biological Evaluation of New Di-aminophosphonate Derivatives as Cytotoxic Agents. Arch. Pharm. Chem. Life Sci. 2013, 346, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Rao Devineni, S.; Doddaga, S.; Donka, R.; Raju Chamarthi, N. CeCl3·7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates. Chin. Chem. Lett. 2013, 24, 759–763. [Google Scholar] [CrossRef]
- Rasheed, S.; Venkataramana, K.; Chandrasekhar, K.; Fareeda, G.; Naga Raju, C. Ultrasound-Assisted Synthesis of Novel-Aminophosphonates and Their Biological Activity. Arch. Pharm. Chem. Life Sci. 2012, 345, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Batta, S.; Bandyopadhyay, D.; Banik, B.K. A Highly Efficient Bismuth Salts-Catalyzed Route for the Synthesis of α-Aminophosphonates. Molecules 2010, 15, 8205–8213. [Google Scholar] [CrossRef] [PubMed]
- Boduszek, B. An efficient synthesis of 1-aminophosphonic acids and esters bearing heterocyclic moiety. Phosphorus Sulfur Silicon Relat. Elem. 1995, 104, 63–70. [Google Scholar] [CrossRef]
- Demir, A.S.; Tanyeli, C.; Sesenoglu, O.; Demic, S. A Simple Synthesis of 1-Amino-phosphonic Acids from 1-Hydroxyiminophosphonates with NaBH4 in the Presence of Transition Metal Compounds. Tetrahedron Lett. 1996, 37, 407–410. [Google Scholar] [CrossRef]
- Manjula, A.; Vittal Rao, B.; Neelakantan, P. One-Pot Synthesis of α-aminophosphonates: An Inexpensive Approach. Synth. Commun. 2003, 33, 2963–2969. [Google Scholar] [CrossRef]
- Mu, X.-J.; Lei, M.-Y.; Zoua, J.-P.; Zhang, W. Microwave-assisted solvent-free and catalyst-free Kabachnik–Fields reactions for α-amino phosphonates. Tetrahedron Lett. 2006, 47, 1125–1127. [Google Scholar] [CrossRef]
- Saito, B.; Egami, H.; Katsuki, T. Synthesis of an Optically Active Al(salalen) Complex and Its Application to Catalytic Hydrophosphonylation of Aldehydes and Aldimines. J. Am. Chem. Soc. 2007, 129, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Cherkasov, R.A.; Galkin, V.I. The Kabachnik–Fields reaction: Synthetic potential and the problem of the mechanism. Russ. Chem. Rev. 1998, 67, 857–882. [Google Scholar] [CrossRef]
- Keglevich, G.; Bálint, E. The Kabachnik–Fields reaction: Mechanism and synthetic use. Molecules 2012, 17, 12821–12835. [Google Scholar] [CrossRef] [PubMed]
- Kafarski, P.; Górniak, M.G.; Andrasiak, I. Kabachnik–Fields reaction under green conditions-A critical overview. Curr. Green Chem. 2015, 5, 218–222. [Google Scholar] [CrossRef]
- Kafarski, P.; Lejczak, B. Biological Activity of Aminophosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem. 1991, 63, 193–215. [Google Scholar] [CrossRef]
- Forlani, G.; Berlicki, Ł.; Duò, M.; Dziędzioła, G.; Giberti, S.; Bertazzini, M.; Kafarski, P. Synthesis and Evaluation of Effective Inhibitors of Plant δ1-Pyrroline-5-carboxylate Reductase. J. Agric. Food Chem. 2013, 61, 6792–6798. [Google Scholar] [CrossRef] [PubMed]
- Occhipinti, A.; Berlicki, Ł.; Giberti, S.; Dziędzioła, G.; Kafarski, P.; Forlani, G. Effectiveness and mode of action of phosphonate inhibitors of plant glutamine synthetase. Pest Manag. Sci. 2010, 66, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Giberti, S.; Bertazzini, M.; Liboni, M.; Berlicki, Ł.; Kafarski, P.; Forlani, G. Phytotoxicity of aminobisphosphonates targeting both δ1-pyrroline-5-carboxylate reductase and glutamine synthetase. Pest Manag. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, A.; Lewkowski, J.; Rychter, P.; Biczak, R. Phytotoxicity of New Furan-derived Aminophosphonic Acids, N-Aryl Furaldimines and 5-Nitrofuraldimine. J. Agric. Food Chem. 2013, 61, 7673–7678. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, A.A.; Kuropatwa, A.; Lewkowski, J.; Szemraj, J. Synthesis of N-aryl, furan-derived aminophosponates and studies of their in vitro cytotoxicity against esophageal cancer cells. Med. Chem. Res. 2013, 21, 852–860. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 2a–h are available from the authors.
Sample Concentration in Soil (mg/kg of Soil Dry Matter) | Emerged Seedlings Number | % of Germination | Fresh Matter (g/pot) | % F.M. |
---|---|---|---|---|
0 | 20 | 100 | 2.780 | 100 |
1 | 19 | 97 | 2.682 | 96 |
10 | 19 | 95 | 2.654 | 95 |
100 | 19 | 97 | 2.919 | 105 |
200 | 19 | 95 | 2.644 | 95 |
400 | 19 | 95 | 2.715 | 98 |
800 | 18 | 88 | 2.100 | 76 |
1000 | 18 | 90 | 1.847 | 66 |
0 | 20 | 100 | 2.780 | 100 |
1 | 19 | 95 | 2.740 | 99 |
10 | 19 | 97 | 2.663 | 96 |
100 | 19 | 97 | 2.729 | 98 |
200 | 19 | 97 | 2.651 | 95 |
400 | 20 | 98 | 2.661 | 96 |
800 | 18 | 92 | 2.021 | 73 |
1000 | 18 | 92 | 1.659 | 60 |
0 | 20 | 100 | 2.780 | 100 |
1 | 19 | 97 | 2.759 | 99 |
10 | 20 | 98 | 2.704 | 97 |
100 | 20 | 98 | 2.801 | 101 |
200 | 19 | 97 | 2.862 | 103 |
400 | 20 | 98 | 2.762 | 99 |
800 | 19 | 95 | 2.643 | 95 |
1000 | 19 | 95 | 2.253 | 81 |
LSDS = 1 | LSDS = 0.401 | |||
LSDC = 1 | LSDC = 0.245 |
Sample Concentration in Soil (mg/kg of Soil Dry Matter) | Emerged Seedlings Number | % of Germination | Fresh Matter (g/pot) | % F.M. |
---|---|---|---|---|
0 | 20 | 100 | 4.951 | 100 |
1 | 20 | 100 | 4.908 | 99 |
10 | 19 | 97 | 4.831 | 98 |
100 | 19 | 98 | 4.728 | 95 |
200 | 18 | 93 | 3.928 | 79 |
400 | 16 | 83 | 1.752 | 35 |
800 | 18 | 90 | 1.136 | 23 |
1000 | 15 | 75 | 0.772 | 16 |
0 | 20 | 100 | 4.951 | 100 |
1 | 20 | 100 | 4.803 | 97 |
10 | 19 | 95 | 4.843 | 98 |
100 | 19 | 97 | 4.728 | 95 |
200 | 19 | 97 | 3.928 | 79 |
400 | 17 | 86 | 2.142 | 43 |
800 | 17 | 88 | 1.546 | 31 |
1000 | 15 | 78 | 1.106 | 22 |
0 | 20 | 100 | 4.951 | 100 |
1 | 19 | 98 | 4.914 | 99 |
10 | 19 | 98 | 4.798 | 97 |
100 | 19 | 98 | 4.873 | 98 |
200 | 19 | 97 | 4.787 | 97 |
400 | 18 | 93 | 3.934 | 79 |
800 | 18 | 93 | 3.328 | 67 |
1000 | 17 | 86 | 2.733 | 55 |
LSDS = 1 | LSDS = 0.435 | |||
LSDC = 1 | LSDC = 0.267 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewkowski, J.; Malinowski, Z.; Matusiak, A.; Morawska, M.; Rogacz, D.; Rychter, P. The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test. Molecules 2016, 21, 694. https://doi.org/10.3390/molecules21060694
Lewkowski J, Malinowski Z, Matusiak A, Morawska M, Rogacz D, Rychter P. The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test. Molecules. 2016; 21(6):694. https://doi.org/10.3390/molecules21060694
Chicago/Turabian StyleLewkowski, Jarosław, Zbigniew Malinowski, Agnieszka Matusiak, Marta Morawska, Diana Rogacz, and Piotr Rychter. 2016. "The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test" Molecules 21, no. 6: 694. https://doi.org/10.3390/molecules21060694
APA StyleLewkowski, J., Malinowski, Z., Matusiak, A., Morawska, M., Rogacz, D., & Rychter, P. (2016). The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test. Molecules, 21(6), 694. https://doi.org/10.3390/molecules21060694