Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis by DSC
2.2. Isothermal Hazard Analysis by TAM III
2.3. Calculation of Thermokinetic Parameters
2.4. Literature Comparison and Verification
2.5. Pyrolysis Products According to CHP Analysis by GC/MS
- Fe2+ + C6H5C(CH3)2OOH → C6H5C(CH3)2O‧ + OH− + Fe3+;
- C6H5C(CH3)2OO‧ + C6H5C(CH3)2H → C6H5C(CH3)2OOH + C6H5C(CH3)2;
- C6H5C(CH3)2OOH + H+ → [C6H5C(CH3)2O]+ + H2O;
- [C6H5C(CH3)2O]+ → [C6H5O(CH3)2C]+;
- C6H5C(CH3)2OOH + [C6H5O(CH3)2C]+ → [C6H5C(CH3)2O]+ + (CH3)2CO + C6H5OH;
- C6H5C(CH3)2OOH → C6H5C(CH3)2O‧ + OH‧;
- C6H5C(CH3)2O‧ + C6H5C(CH3)2H → C6H5C(CH3)2‧ + C6H5C(CH3)2OH;
- C6H5C(CH3)2‧ + OH‧ → C6H5CH3C = CH2 + H2O
3. Materials and Methods
3.1. Samples
3.2. Differential Scanning Calorimetry
3.3. Thermal Activity Monitor
3.4. Gas Chromatography and Gas Chromatography/Mass Spectrometer (GC/MS)
- Test conditions:Column: Model no: Agilent 19091S–433, −60.0 °C–325.0 °C (350.0 °C), HP −5.0 ms, Capillary: 30.0 m × 250.0 μm × 0.25 μm.Carry gas: Helium (1.0 mL/min).Injection port: Split ratio (1:1), 280.0 °C, Injection volume: 1.0 μL.Detector: MSD, 280.0 °C.
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tseng, J.M.; Kuo, C.Y.; Liu, M.Y.; Shu, C.M. Emergency response plan for boiler explosion with toxic chemical releases at Nan-Kung industrial park in central Taiwan. Process. Saf. Environ. 2008, 86, 415–420. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, Y.C.; Chen, L.Y.; Dia, J.H.; Shu, C.M. Loss prevention in the petrochemical and chemical-process high-tech industries in Taiwan. J. Loss. Prev. Process Ind. 2010, 23, 531–538. [Google Scholar] [CrossRef]
- Lin, C.P.; Chang, H.K.; Chang, Y.M.; Chen, S.W.; Shu, C.M. Emergency response study for chemical releases in the high-tech industry in Taiwan—A semiconductor plant example. Process. Saf. Environ. 2009, 87, 353–360. [Google Scholar] [CrossRef]
- CAMEO. Chemical Datasheet of Cumene Hydroperoxide. Available online: https://cameochemicals.noaa.gov/chemical/478 (accessed on 26 April 2016).
- Chen, K.Y.; Wu, S.H.; Wang, Y.W.; Shu, C.M. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC. J. Loss. Prev. Process Ind. 2008, 21, 101–109. [Google Scholar] [CrossRef]
- Somma, I.D.; Marotta, R.; Andreozzi, R.; Caprio, V. Detailed thermal and kinetic modeling of cumene hydroperoxide decomposition in cumene. Process Saf. Environ. 2013, 91, 262–268. [Google Scholar] [CrossRef]
- Duh, Y.S.; Kao, C.S.; Lee, C.; Yu, S.W. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process. Process Saf. Environ 1997, 75, 73–80. [Google Scholar] [CrossRef]
- Eto, I.; Akiyoshi, M.; Miyake, A.; Ogawa, T.; Matsunaga, T. Hazard evaluation of runaway reaction of hydrogen peroxide—Influence of contamination of various ions. J. Loss Prev. Process Ind. 2009, 22, 15–20. [Google Scholar] [CrossRef]
- Wang, Y.W.; Shu, C.M.; Duh, Y.S.; Kao, C.S. Thermal runaway hazards of cumene hydroperoxide with contaminants. Ind. Eng. Chem. Res. 2001, 40, 1125–1132. [Google Scholar] [CrossRef]
- Huang, C.C.; Peng, J.J.; Wu, S.H.; Hou, H.Y.; You, M.L.; Shu, C.M. Effects of cumene hydroperoxide on phenol and acetone manufacturing by DSC and VSP2. J. Therm. Anal. Calorim. 2010, 102, 579–585. [Google Scholar] [CrossRef]
- Levin, M.E.; Gonzales, N.O.; Zimmerman, L.W.; Yang, J. Kinetics of acid-catalyzed cleavage of cumene hydroperoxide. J. Hazard. Mater. 2006, 130, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A. Principles and Prevention of Corrosion; Prentice Hall: Lebanon, IN, USA, 1996. [Google Scholar]
- Ho, T.C.; Duh, Y.S.; Chen, J.R. Case studies of incidents in runaway reactions and emergency relief. Process Saf. Prog. 1998, 17, 259–262. [Google Scholar] [CrossRef]
- Wesslinga, B.; Posdorfera, J. Corrosion prevention with an organic metal (polyaniline): Corrosion test results. Electrochim Acta. 1999, 44, 2139–2147. [Google Scholar] [CrossRef]
- Wranglen, G. An Introduction to Corrrosion and Protection of Metals; Chapman and Hall Limited: London, UK, 1985. [Google Scholar]
- You, M.L.; Liu, M.Y.; Wu, S.H.; Chi, J.H.; Shu, C.M. Thermal explosion and runaway reaction simulation of lauroyl peroxide by DSC tests. J. Therm. Anal. Calorim. 2009, 96, 777–782. [Google Scholar] [CrossRef]
- You, M.L.; Tseng, J.M.; Liu, M.Y.; Shu, C.M. Runaway reaction of lauroyl peroxide with nitric acid by DSC. J. Therm. Anal. Calorim. 2010, 102, 535–539. [Google Scholar] [CrossRef]
- Tseng, J.M.; Shu, C.M.; Gupta, J.P.; Lin, Y.F. Evaluation and modeling runaway reaction of methyl ethyl ketone peroxide mixed with nitric acid. Ind. Eng. Chem. Res. 2007, 46, 8738–8745. [Google Scholar] [CrossRef]
- Wei, J.M.; You, M.L.; Chu, Y.C.; Shu, C.M. Evaluation of thermal hazard for lauroyl peroxide by VSP2 and TAM III. J. Therm. Anal. Calorim. 2012, 109, 1237–1243. [Google Scholar] [CrossRef]
- Hou, H.Y.; Tsai, T.L.; Shu, C.M. Reaction of cumene hydroperoxide mixed with sodium hydroxide. J. Hazard. Mater. 2008, 152, 1214–1219. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, A.; Ivanova, R. GC methods for quantitative determination of benzene in gasoline. Acta Chromatogr. 2003, 13, 215–225. [Google Scholar]
- Hosaka, A.; Watanabe, C.; Tsuge, S. Rapid determination of decabromodiphenyl ether in polystyrene by thermal desorption-GC/MS. Anal. Sci. 2005, 21, 1145–1147. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tang, X.; Zhang, Y.; Zhao, W. Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography/mass spectrometry. Molecules 2012, 17, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors.
Date | Country | Material | Cause | Hazard | Injuries | Deaths |
---|---|---|---|---|---|---|
06/09/2001 | Australia | Cumene | Human error | Release | 0 | 0 |
09/09/2002 | USA | CHP | System failure | Explosion (Reactor) | 0 | 0 |
09/24/2002 | USA | CHP | Mechanical failure | Explosion | 0 | 0 |
01/05/2003 | USA | Cumene | Human error | Release | 0 | 0 |
09/26/2003 | Taiwan | CHP/DCPO | Thermal decomposition | Explosion (Reactor) | 2 | 0 |
05/18/2005 | Taiwan | Cumene | Accident (capsized) | – | 0 | 0 |
05/24/2006 | Taiwan | Phenol | Human error (splashed) | – | 0 | 1 |
03/01/2007 | USA | Cumene | Barge accident (leaked) | – | 0 | 0 |
11/09/2007 | Taiwan | Acetone | Fire (leaked) | Explosion (Tank) | 0 | 0 |
01/30/2008 | Taiwan | DCPO | Thermal decomposition | Explosion (Reactor) | 0 | 0 |
01/08/2010 | Taiwan | CHP | Fire | Explosion (Reactor) | 0 | 0 |
07/19/2013 | Taiwan | Phenol | Accident (capsized) | Release | 1 | 0 |
04/04/2014 | USA | Acetone | Thermal accident | Fire | 0 | 0 |
Organic Peroxide | Incompatibility | T0 (°C) | Tmax (°C) | ΔHd (J/g) | ||
---|---|---|---|---|---|---|
Mass (mg) | Substance | Mass (mg) | ||||
CHP 80.0 mass% | 2.5% ± 10% | – | – | 105.0 | 156.0 | 1086.0 |
ZnBr2 | 0.75 | 95.0 | 155.0 | 1192.0 | ||
CuBr2 | 0.65 | 75.0 | 158.0 | 1100.0 | ||
FeBr2 | 0.71 | 74.0 | 163.0 | 1246.0 |
Organic Peroxide | Incompatibility | 80.0 °C | 90.0 °C | 100.0 °C | 110.0 °C | ||||
---|---|---|---|---|---|---|---|---|---|
Qmax (W/g) | TMRiso (h) | Qmax (W/g) | TMRiso (h) | Qmax (W/g) | TMRiso (h) | Qmax (W/g) | TMRiso (h) | ||
CHP 80 mass% | – | – | – | 0.0175 | 57.41 | 0.0293 | 22.88 | 0.0523 | 9.49 |
ZnBr2 | – | – | 0.0050 | 29.42 | 0.0302 | 0.42 | 0.1011 | 0.41 | |
CuBr2 | 0.0105 | 23.35 | 0.0152 | 27.42 | 0.0307 | 8.66 | 0.1152 | 3.42 | |
FeBr2 | 0.0458 | 0.43 | 0.1005 | 0.35 | 0.0771 | 0.34 | 0.0932 | 0.37 |
Material Contaminant | Ea (kJ/mol) | |
---|---|---|
CHP | – | 155.46 |
CHP | ZnBr2 | 146.76 |
CHP | CuBr2 | 95.55 |
CHP | FeBr2 | 21.81 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, M.-L. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS. Molecules 2016, 21, 562. https://doi.org/10.3390/molecules21050562
You M-L. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS. Molecules. 2016; 21(5):562. https://doi.org/10.3390/molecules21050562
Chicago/Turabian StyleYou, Mei-Li. 2016. "Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS" Molecules 21, no. 5: 562. https://doi.org/10.3390/molecules21050562
APA StyleYou, M.-L. (2016). Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS. Molecules, 21(5), 562. https://doi.org/10.3390/molecules21050562