Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Chemistry
2.2. Evaluation of in Vitro Antifungal Activity
Compound | IC50 for Penicillium digitatumi (ppm) | IC50 for Penicillium italicum (ppm) | IC50 for Aspergillus niger (ppm) |
---|---|---|---|
1 | 35.54 ± 1.75 | 133.12 ± 2.27 | 256.22 ± 18.93 |
2 | 22.73 ± 3.43 | 114.01 ± 7.63 | 385.56 ± 12.74 |
3 | 33.64 ± 1.85 | 94.41 ± 7.62 | 311.04 ± 5.71 |
4 | 47.59 ± 0.13 | 156.97 ± 10.13 | 243.64 ± 11.31 |
5 | 31.45 ± 3.26 | 191.37 ± 8.14 | 301.01 ± 3.54 |
6 | 28.43 ± 0.82 | 182.33 ± 13.50 | 263.81 ± 8.84 |
7 | 201.65 ± 6.48 | 272.83 ± 18.73 | 257.99 ± 9.32 |
8 | 59.73 ± 4.31 | 208.85 ± 12.28 | 333.15 ± 13.62 |
9 | 123.69 ± 8.79 | 212.60 ± 11.08 | 202.40 ± 2.99 |
Linolenic acid | 57.96 ± 2.16 | 234.21 ± 10.43 | 272.14 ± 5.47 |
2.3. Evaluation of in Vivo Antifungal Activity
Compound | Disease Index (%) |
---|---|
Control | 97.5 |
1 | 80.0 |
2 | 75.0 |
3 | 82.5 |
4 | 90.0 |
5 | 77.5 |
6 | 65.0 |
7 | 62.5 |
8 | 65.0 |
9 | 60.0 |
Linolenic acid | 65.0 |
3. Experimental Section
3.1. General
3.2. Synthesis of Compounds 1–9
3.3. Antifungal Biology Assay
3.3.1. Strain
3.3.2. In Vitro Antifungal Activity [29]
3.3.3. In Vivo Antifungal Activity
- 0: lesion diameter = 0 mm (no visible disease symptoms);
- 1: 1 mm ≤ lesion diameter ≤ 10 mm;
- 2: 10 mm < lesion diameter ≤ 20 mm;
- 3: 20 mm < lesion diameter ≤ 30 mm;
- 4: lesion diameter > 30 mm.
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Griffiths, G. Biosynthesis and analysis of plant oxylipins. Free Radic. Res. 2015, 49, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, A.; D’Abrosca, B.; DellaGreca, M.; Izzo, A.; Natale, A.; Pascarella, M.T.; Pacifico, S.; Zarrelli, A.; Monaco, P. Chemical characterization of new oxylipins from Cestrum parqui, and their effects on seed germination and early seedling growth. Chem. Biodivers. 2008, 5, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Chehab, E.W.; Perea, J.V.; Gopalan, B.; Theg, S.; Dehesh, K. Oxylipin pathway in rice and arabidopsis. J. Integr. Plant Biol. 2007, 49, 43–51. [Google Scholar] [CrossRef]
- Savchenko, T.V.; Zastrijnaja, O.M.; Klimov, V.V. Oxylipins and plant abiotic stress resistance. Biochemistry 2014, 79, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A.; Schilmiller, A.L. Oxylipin metabolism in response to stress. Curr. Opin. Plant Biol. 2002, 5, 230–236. [Google Scholar] [CrossRef]
- Böttcher, C.; Pollmann, S. Plant oxylipins: Plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J. 2009, 276, 4693–4704. [Google Scholar] [CrossRef] [PubMed]
- Prost, I.; Dhondt, S.; Rothe, G.; Vicente, J.; Rodriguez, M.J.; Kift, N.; Carbonne, F.; Griffiths, G.; Esquerré-Tugayé, M.-T.; Rosahl, S.; et al. Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol. 2005, 139, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.L.; Hara-Nishimura, I. Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr. Opin. Plant Biol. 2015, 25, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Raynor, L.; Mitchell, A.; Walker, R.; Walker, K. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia 2004, 157, 87–90. [Google Scholar] [PubMed]
- Christensen, S.A.; Kolomiets, M.V. The lipid language of plant–fungal interactions. Fungal Genet. Biol. 2011, 48, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Santino, A.; Taurino, M.; de Domenico, S.; Bonsegna, S.; Poltronieri, P.; Pastor, V.; Flors, V. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 2013, 32, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Abdelillah, A.; Houcine, B.; Halima, D.; sari Meriel, C.; Imane, Z.; Eddine, S.D.; Abdallah, M.; sari Daoudi, C. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus. Asian Pac. J. Trop. Biomed. 2013, 3, 443–448. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar] [PubMed]
- Lorente, D.; Escandell-Montero, P.; Cubero, S.; Gómez-Sanchis, J.; Blasco, J. Visible–NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. J. Food Eng. 2015, 163, 17–24. [Google Scholar] [CrossRef]
- Chafer, M.; Sanchez-Gonzalez, L.; Gonzalez-Martinez, C.; Chiralt, A. Fungal decay and shelf Life of oranges coated with chitosan and bergamot, thyme, and tea tree essential oils. J. Food Sci. 2012, 77, E182–E187. [Google Scholar] [CrossRef] [PubMed]
- Moscoso-Ramírez, P.; Palou, L. Preventive and curative activity of postharvest potassium silicate treatments to control green and blue molds on orange fruit. Eur. J. Plant Pathol. 2014, 138, 721–732. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Moscoso-Ramírez, P.; Montesinos-Herrero, C.; Palou, L. Antifungal activity of sodium propylparaben alone or in combination with low doses of imazalil against Penicillium decay on citrus fruit. Eur. J. Plant Pathol. 2014, 140, 145–157. [Google Scholar] [CrossRef]
- Marques, J.P.R.; Amorim, L.; Silva-Junior, G.J.; Spósito, M.B.; Appezzato-da Gloria, B. Structural and biochemical characteristics of citrus flowers associated with defence against a fungal pathogen. AoB Plants 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Vedachalam, S.; Xiang, S.; Liu, X.-W. Direct C-glycosylation of organotrifluoroborates with glycosyl fluorides and its application to the total synthesis of (+)-Varitriol. Org. Lett. 2011, 13, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.L.; Wu, Y.L. Stereoselective synthesis of methyl (11S,12S,13S)-(9Z,15Z)-11-hydroxy-12,13-epoxy octadecadienoate from d-mannose. Tetrahedron 1993, 49, 4665–4670. [Google Scholar] [CrossRef]
- Michieletti, M.; Bracci, A.; Compostella, F.; de Libero, G.; Mori, L.; Fallarini, S.; Lombardi, G.; Panza, L. Synthesis of α-galactosyl ceramide (KRN7000) and analogues thereof via a common precursor and their preliminary biological assessment. J. Org. Chem. 2008, 73, 9192–9195. [Google Scholar] [CrossRef] [PubMed]
- Ohrui, H.; Jones, G.H.; Moffatt, J.G.; Maddox, M.L.; Christensen, A.T.; Byram, S.K. C-Glycosyl nucleosides. V. Some unexpected observations on the relative stabilities of compounds containing fused five-membered rings with epimerizable substituenes. J. Am. Chem. Soc. 1975, 97, 4602–4613. [Google Scholar]
- Yan, S.; Liang, Y.; Zhang, J.; Chen, Z.; Liu, C.-M. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species. Fungal Genet. Biol. 2015, 81, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.-H.; Hu, K.-D.; Hu, L.-Y.; Li, Y.-H.; Hu, L.-B.; Yan, H.; Liu, Y.-S.; Zhang, H. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Liavonchanka, A.; Feussner, I. Lipoxygenases: Occurrence, functions and catalysis. J. Plant Physiol. 2006, 163, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Si, W. The Study on the Biological Characters of Postharvest Pathogen Diplodia natalensis in Ponkan Fruit and Their Control. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2011. [Google Scholar]
- Zhu, Y.; Yu, J.; Brecht, J.K.; Jiang, T.; Zheng, X. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chem. 2016, 190, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 7 and 8 are available from the authors.
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Li, Y.; Chen, H.; Zeng, Z.; Li, Z.-L.; Jiang, H. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016, 21, 254. https://doi.org/10.3390/molecules21020254
Ma J, Li Y, Chen H, Zeng Z, Li Z-L, Jiang H. Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules. 2016; 21(2):254. https://doi.org/10.3390/molecules21020254
Chicago/Turabian StyleMa, Jimei, Yupeng Li, Hangwei Chen, Zhen Zeng, Zi-Long Li, and Hong Jiang. 2016. "Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens" Molecules 21, no. 2: 254. https://doi.org/10.3390/molecules21020254
APA StyleMa, J., Li, Y., Chen, H., Zeng, Z., Li, Z.-L., & Jiang, H. (2016). Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules, 21(2), 254. https://doi.org/10.3390/molecules21020254