Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Measurement of Cy-3-glu in Blueberries
2.2. Analysis of Spectral Characteristics of Cy-3-glu in Blueberries
2.3. Dynamic Analysis of Cy-3-glu in Blueberries
2.4. ·OH Determination
2.5. Analysis of Antioxidant Activity
2.6. Degradation Anthocyanins of Blueberry in Ethanol Solutions
3. Experimental Section
3.1. Materials and Reagents
3.2. Separation and Purification of Cy-3-glu
3.3. Determination of Cy-3-glu Content of Cy-3-glu in Blueberries
3.4. Power Ultrasound of Cy-3-glu in Blueberries
3.5. Spectral Feature Analysis of Cy-3-glu in Blueberries
3.6. Dynamic Analysis of Cy-3-glu in Blueberries
3.7. In Vitro Antioxidant Activity of Cy-3-glu in Blueberries
3.7.1. Removal of ·OH by Cy-3-glu in Blueberries
3.7.2. Removal of DPPH by Cy-3-glu in Blueberries after Power Ultrasound
3.7.3. Determination of Ferric Reducing Antioxidant Potential Assay of Cy-3-glu in Blueberries after Power Ultrasound
3.7.4. Role of Cy-3-glu in Blueberries in Beta Carotene–Linoleic Acid System
3.7.5. Determination of Total Antioxidant Capacity in Cy-3-glu in Blueberries
3.8. Degradation Test of Cy-3-glu in Blueberries
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
Cy-3-glu | Cyanidin-3-glucoside |
FRAP | Ferric reducing/antioxidant power |
DPPH | 1,1-Diphenyl-2-picrylhydrazyl radical |
References
- Liu, J.J.; Liu, C.G.; Wang, F.; Song, Y.; Li, Z.L.; Ji, J. Preparation of pt nanocrystals on ultrasonic cavitation functionalized pristine carbon nanotubes as electrocatalysts for electrooxidation of methanol. Ind. Eng. Chem. Res. 2014, 53, 20099–20106. [Google Scholar] [CrossRef]
- Li, L.; Song, S.T.; Zhang, X.X.; Chen, R.J.; Lu, J.; Wu, F.; Amine, K. Ultrasonic-assisted co-precipitation to synthesize lithium-rich cathode Li1.3Ni0.21Mn0.64O2+d materials for lithium-ion batteries. J. Power Sources 2014, 272, 922–928. [Google Scholar] [CrossRef]
- Schneider, Y.; Zahn, S.; Schindler, C.; Rohm, H. Ultrasonic excitation affects friction interactions between food materials and cutting tools. Ultrasonics 2009, 49, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Chen, M.S.; Yu, S.J. Effect of sugarcane molasses extract on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in a model system. Food Chem. 2016, 197, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert-Vian, M.; Cravotto, G. Review: Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, L.; Cravotto, G.; Giordana, L.; Binello, A.; Chemat, F. Ultrasound-assisted extraction of clove buds with batch- and flow-reactors: A comparative study on a pilot scale. Innov. Food Sci. Emerging Technol. 2013, 20, 167–172. [Google Scholar] [CrossRef]
- Chen, F.; Sun, Y.Z.; Liao, X.J. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry. Ultrason. Sonochem. 2007, 14, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Patras, A.; Brunton, N. Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason. Sonochem. 2010, 17, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, J.; Silva, J.L. Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbit eye blueberries. Food Chem. 2007, 101, 898–906. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’donnell, C.P.; Patras, A. Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. J. Agric. Food Chem. 2008, 56, 10071–10077. [Google Scholar] [CrossRef] [PubMed]
- Floros, J.D.; Liang, H.H. Acoustically assisted diffusion through membranes and biomaterials. Food Technol. 1994, 48, 79–84. [Google Scholar]
- Jordens, J.; Bamps, B.; Gielen, B.; Braeken, L.; van Gerven, T. The effects of ultrasound on micromixing. Ultrason. Sonochem. 2016, 32, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Slavin, M.; Lu, Y.; Kaplan, N.; Yu, L. Effects of baking on cyanidin-3-glucoside content and antioxidant properties of black and yellow soybean crackers. Food Chem. 2013, 141, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Serra, D.; Paixao, J.; Nunes, C.; Dinis, T.C.P.; Almeida, L.M. Cyanidin-3-glucoside suppresses cytokine-induced inflammatory response in human intestinal cells: Comparison with 5-aminosalicylic acid. PLoS ONE 2013, 8, e73001. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.X.; Lin, W.J.; Wu, P.F.; Deng, J.J.; Li, C.; Xu, D.L.; Wang, D.; Chen, L.S. Memory effect and redistribution of cavitation nuclei in a thin liquid layer. Ultrason. Sonochem. 2016, 32, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.L.; Escribano-Bailón, M.T.; Alonso, J.J.P.; Rivas-Gonzalo, J.C.; Santos-Buelga, C. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 2007, 40, 374–382. [Google Scholar] [CrossRef]
- Torgils, F.; Luis, C.; Oyvind, M.A. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar]
- Paula, F.; Paulo, F.; Higuinaldo, C.D.N.; Fernando, P. Photochemical and thermal degradation of anthocyanidins. J. Photochem. Photobiol. A Chem. 1993, 75, 113–118. [Google Scholar]
- Turfan, O.; Turkyilmaz, M.; Yemis, O.; Ozkan, M. Effects of clarification and storage on anthocyanins and color of pomegranate juice concentrates. J. Food Qual. 2012, 35, 272–282. [Google Scholar] [CrossRef]
- Li, Z.; Han, J.S.; Lu, J.J.; Zhou, J.S.; Chen, J.M. Vibratory cavitation erosion behavior of AISI 304 stainless steel in water at elevated temperatures. Wear 2014, 321, 33–37. [Google Scholar] [CrossRef]
- Cao, S.; Liu, L.; Lu, Q.; Xu, Y.; Pan, S.; Wang, K. Integrated effects of ascorbic acid, flavonoids and sugars on thermal degradation of anthocyanins in blood orange juice. Eur. Food Res. Technol. 2009, 228, 975–983. [Google Scholar] [CrossRef]
- Kendziorra, C.; Meyer, H.; Dewey, M. Implementation of a phase detection algorithm for dynamic cardiac computed tomography analysis based on time dependent contrast agent distribution. PLoS ONE 2014, 9, e116103. [Google Scholar] [CrossRef] [PubMed]
- Puga, C.D.; Hilario, M.C.; Mendoza, J.G.E.; Campos, O.M.; Jijon, E.M.; Martinez, M.D.; Izazaga, M.A.A.; Solano, J.A.L.; Chaverri, J.P. Antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri and Acacia farnesiana pods extracts: In vitro and in vivo assays. BMC Complement. Altern. Med. 2015, 15. [Google Scholar] [CrossRef]
- Dimitrova-Dyulgerova, I.; Zhelev, I.; Mihaylova, D. Phenolic profile and in vitro antioxidant activity of endemic bulgarian Carduus species. Pharmacogn. Mag. 2015, 11, S575–S579. [Google Scholar] [PubMed]
- Al-Mamary, M.; Al-Habori, M.; Al-Zubairi, A.S. The in vitro antioxidant activity of different types of palm dates (Phoenix dactylifera) syrups. Arab. J. Chem. 2014, 7, 964–971. [Google Scholar] [CrossRef]
- Kumar, M.S.; Chaudhury, S.; Balachandran, S. In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity. Appl. Biochem. Biotechnol. 2014, 174, 2897–2909. [Google Scholar] [CrossRef] [PubMed]
- Kadir, F.A.; Kassim, N.M.; Abdulla, M.A.; Yehye, W.A. Pass-predicted vitex negundo activity: Antioxidant and antiproliferative properties on human hepatoma cells-an in vitro study. BMC Complement. Altern. Med. 2013, 13. [Google Scholar] [CrossRef] [PubMed]
- Altunkaya, A.; Gokmen, V.; Skibsted, L.H. Ph dependent antioxidant activity of lettuce (L. Sativa) and synergism with added phenolic antioxidants. Food Chem. 2016, 190, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Wu, Y.P.; Zhang, J.F.; Zheng, Y.G.; Zheng, Y.; Lin, J.R. Synergistic effect of ultrasonic cavitation erosion and corrosion of WC-CoCr and FeCrSiBMn coatings prepared by hvof spraying. Ultrason. Sonochem. 2016, 31, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.X.; Dupuis, J.H.; Marcone, M.F.; Pauls, P.K.; Liu, R.H.; Liu, Q.; Tang, Y.; Zhang, B.; Tsao, R. Physicochemical properties and in vitro digestibility of cooked regular and nondarkening cranberry beans (Phaseolus vulgaris L.) and their effects on bioaccessibility, phenolic composition, and antioxidant activity. J. Agric. Food Chem. 2015, 63, 10448–10458. [Google Scholar] [CrossRef] [PubMed]
- Ourique, A.F.; Chaves, P.D.; Souto, G.D.; Pohlmann, A.R.; Guterres, S.S.; Beck, R.C.R. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: Development, in vitro characterization and antioxidant activity. Eur. J. Pharm. Sci. 2014, 65, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich us foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Lu, M.; Yuan, B.; Zeng, M.M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int. 2011, 44, 530–536. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds including cyanidin-3-glucoside, beta carotene–linoleic acid, FRAP solution are available from the authors.
Parameters | 200 W | 300 W | 400 W | 500 W |
---|---|---|---|---|
K (min−1) | 1.34 × 10−2 | 3.59 × 10−2 | 5.06 × 10−2 | 5.89 × 10−2 |
t1/2 (min) | 51.7274 | 19.3077 | 13.6986 | 11.7682 |
R2 | 0.9709 | 0.9475 | 0.9491 | 0.9782 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, G.-L.; Ma, X.-H.; Cao, X.-Y.; Chen, J. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry. Molecules 2016, 21, 1564. https://doi.org/10.3390/molecules21111564
Yao G-L, Ma X-H, Cao X-Y, Chen J. Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry. Molecules. 2016; 21(11):1564. https://doi.org/10.3390/molecules21111564
Chicago/Turabian StyleYao, Guang-Long, Xing-Hui Ma, Xian-Yin Cao, and Jian Chen. 2016. "Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry" Molecules 21, no. 11: 1564. https://doi.org/10.3390/molecules21111564
APA StyleYao, G. -L., Ma, X. -H., Cao, X. -Y., & Chen, J. (2016). Effects of Power Ultrasound on Stability of Cyanidin-3-glucoside Obtained from Blueberry. Molecules, 21(11), 1564. https://doi.org/10.3390/molecules21111564